Skip to main content
Log in

On the initial stages of cement hydration

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

After the initial mixing of cement, an induction period occurs during which its consistency remains constant. Thickening occurs at the end of this period when the consistency is observed to increase very rapidly. In this paper we propose a reaction-diffusion model for the hydration of tricalcium silicate, a principal constituent of cement, which is believed to be responsible for the initial development of its strength. Our model is based on the assumption that the hydration of cement can be described as a dissolution -precipitation reaction. The mathematical solutions enable us to determine some of the factors that control the length of the induction period and make predictions of the ionic concentrations which are in agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Birchall, A. J. Howard and J. E. Bailey. On the Hydration of Portland Cement. Proc. R. Soc. London 360 (1978) 445–453.

    Google Scholar 

  2. D. D. Double. New developments in understanding the chemistry of cement hydration. Phil. Trans. R. Soc. London A310 (1983) 53–66.

    Google Scholar 

  3. P. Meredith, A. M. Donald and K. Luke. Pre-induction and induction hydration of tricalcium silicate: An environmental scanning electron microscope study. J. Mat. Sci. 30 (1995) 1921–1930.

    Google Scholar 

  4. H. N. Stein and J. M. Stevels. Influence of silica on the hydration of 3 CaO,SiO2. J. Appl. Chem. 14 (1964) 338–345.

    Google Scholar 

  5. J. G. de Jong and H. N. Stein, and J. M. Stevels. Hydration of tricalcium silicate. J. Appl. Chem. 17 (1967) 246–250.

    Google Scholar 

  6. T. C. Powers. Einige physikalische Gesichtspunkte zur Hydratation von Portlandzement. Zement-Kalk-Gips 14 (1961) 81–87.

    Google Scholar 

  7. D. D. Double, A. Hellawell and S. J. Perry. The hydration of Portland cement. Proc. R. Soc. London A369 (1978) 435–451.

    Google Scholar 

  8. D. D. Lasic, M. M. Pintar and R. Blinc. Are proton NMR observations supportive of the osmotic model of cement hydration?. Phil. Mag. Lett. 58 (1988) 227–232.

    Google Scholar 

  9. L. D. Mitchelle, M. Prica and J. D. Birchall. Aspects of Portland cement hydration studied using atomic force microscopy. J. Mat. Sci. 31 (1996) 4207–4212.

    Google Scholar 

  10. J. S. Lota, J. Bensted, J. Munn and P. L. Pratt. Hydration of class G oilwell cement at 20 ºC and 5 ºC. L'industria italiana del Cemento 725 (1997) 776–798.

    Google Scholar 

  11. D. Damidot and A. Nonat. Hydration of C3S. In: A. Nonat and J. C. Mutin, (eds), Hydration and Setting of Cements. London: E & F Spon (1992) 23–34.

    Google Scholar 

  12. D. Bentz, E. J. Garboczi, M. F. Kleyn and P. E. Stuzman. Cellular automaton simulations of cement hydration and microstructural development. Modelling Simul. Mater. Sci. Eng. 2 (1994) 783–808.

    Google Scholar 

  13. F. Tzschichholz, H. J. Herrmann and H. Zanni. Reaction-diffusion model for the hydration and setting of cement. Phys. Rev., E53 (1996) 2629–2637.

    Google Scholar 

  14. R. Kondo and S. Ueda. Kinetics and mechanisms of the hydration of cements. In Proc. Int. Conf. Chem. Cem.. Toyko (1968) 102–108.

  15. J. M. Pommersheim and J. R. Clifton. Mathematical modelling of tricalcium silicate hydration. Cem. Conc. Res. 9 (1979) 765–770.

    Google Scholar 

  16. J. M. Pommersheim, J. R. Clifton. and G. J. Frohnsdorff. Mathematical modelling of tricalcium silicate hydration. II. Hydration sub-models and the effect of model parameters. Cem. Conc. Res. 12 (1982) 765–772.

    Google Scholar 

  17. P. Barret and, D. Bertrandie. Fundamental hydration kinetic features of the major cement constituents-Ca3SiO5 and β-Ca2SiO4. J. Chim. Phys. 82 (1986) 765–775.

    Google Scholar 

  18. S. A. Greenberg, T. N. Chang and E. Anderson. Investigation of colloidal hydrated calcium silicates. I. Solubility products. J. Phys. Chem. 64 (1960) 1151–1157.

    Google Scholar 

  19. N. L. Thomas and D. D. Double. Calcium and silicon concentrations in solution during the early stages of hydration of portland cement and tricalcium silicate. Cem. Conc. Res. 11 (1981) 675–687.

    Google Scholar 

  20. K. Fujii, and M. Kondo. Hydration of tricalcium silicate in a very early stage. In: Proc. Int. Conf. Chem. Cem.. Toyko (1968) 206–212.

  21. R. A. Alberty and R. J. Silbey. Physical Chemistry. New York: Wiley and Sons (1992) 898 p.

    Google Scholar 

  22. H. F. W. Taylor. Cement Chemistry. London: Academic Press (1997) 499 p.

    Google Scholar 

  23. P. W. Brown, J. M. Pommersheim and G. J. Frohnsdorff. A kinetic model for the hydration of tricalcium silicate. Cem. Conc. Res 15 (1985) 35–41.

    Google Scholar 

  24. D. Damidot, A. Nonat and P. Barret. Kinetics of tricalcium silicate hydration in diluted suspensions by microcalorimetric measurements. J. Am. Ceram. Soc. 73 (1990) 3319–3322.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preece, S., Billingham, J. & King, A. On the initial stages of cement hydration. Journal of Engineering Mathematics 40, 43–58 (2001). https://doi.org/10.1023/A:1017533810329

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017533810329

Navigation