Skip to main content

Advertisement

Log in

Versatile stem cells, young and old. A review

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Both embryonic and somatic stem cells have been studied in recent years with particular regard to their differentiation potential. In vitro studies allow a considerable amplification of such cells in culture as well as the induction of commitment in different directions under proper stimulating factors. Moreover, a surprising versatility has been discovered,which makes possible a `reprogramming' of stem cells into a lineage pathway which may be completely different from the expected direction: for instance, a production of brain cells from blood progenitors has been obtained. It is thus possible to envisage methods of producing in culture sufficient amounts of stem cells, committed to a certain pathway, which can be transplanted in vivo to replace damaged tissues and organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman J and Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rat. J Comp Neurol 124: 319–335.

    Article  PubMed  CAS  Google Scholar 

  • Barinaga M (2000) Fetal neuron grafts pave the way for stem cell therapies. Science 287: 11–12.

    Article  Google Scholar 

  • Bjornson CRR, Rietze RL, Reynolds BA, et al. (1999) Turning brain into blood: A haemopoietic fate adopted by adult neural stem cells in vivo. Science 283: 534–537.

    Article  PubMed  CAS  Google Scholar 

  • Bradley A (1990) Embryonic stem cells: Proliferation and differentiation. Curr Opin Cell Biol 2: 1013–1017.

    Article  PubMed  CAS  Google Scholar 

  • Brustle O, Jones KN, Learish RD, et al. (1999) Embryonic stem cellderived glial precursors: A source of myelinating transplants. Science 285: 754–756.

    Article  PubMed  CAS  Google Scholar 

  • Cheng T, Rodrigues N, Shen H, et al. (2000) Haematopoietic stem cell quiescence maintained by p21-cip1/waf1. Science 287: 1804–1808.

    Article  PubMed  CAS  Google Scholar 

  • Clarke DL, Johansonss CB, Wilbertz J, et al. (2000) Generalized potential of adult neural stem cells. Science 288: 1660–1663.

    Article  PubMed  CAS  Google Scholar 

  • Doetsch F, Garcia-Verdugo M and Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17: 5046–5061.

    PubMed  CAS  Google Scholar 

  • Dzierzak E, Medvinsky A and De Bruijn M (1998) Qualitative and quantitative aspects of haematopoietic cell development in the mammalian embryo. Immunol Today 19: 228–235.

    Article  PubMed  CAS  Google Scholar 

  • Eglitis MA and Mezey E (1997) Haematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 94: 4080–4085.

    Article  PubMed  CAS  Google Scholar 

  • Emerson SG (1996) Ex vivo expansion of haematopoietic precursors, progenitors and stem cells: The next generation of cellular therapeutics. Blood 87: 3082–3088.

    PubMed  CAS  Google Scholar 

  • Eridani S and Morali F (1993) Identification of haemopoietic stem cells. Cytotechnology 11: 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Eridani S, Mazza U, Massaro P, et al. (1998) Cytokine effect on ex vivo expansion of haemopoietic stem cells from different human sources. Biotherapy 11: 291–296.

    Article  PubMed  CAS  Google Scholar 

  • Eridani S (1999) Replacement of damaged neural cells: A mirage? J R Soc Med 92Z: 502–504.

    Google Scholar 

  • Ferrari G, Cusella Deangelis G, Coletta M, et al. (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 179: 1528–1530.

    Article  Google Scholar 

  • Fuchs E and Segre JA (2000) Stem cells: A new lease of life. Cell 100: 143–155.

    Article  PubMed  CAS  Google Scholar 

  • Geiger H, Sick S, Bonifer C and Muller AM (1998) Globin gene expression is reprogrammed in chimeras generated by injecting adult hemopoietic stem cells in mouse blastocyst. Cell 93: 1055–1055.

    Article  PubMed  CAS  Google Scholar 

  • Gluckman E, Rocha V, Boyer A, et al. (1997) Outcome of cord blood transplantation from related and unrelated donors. N Engl J Med 337: 373–381.

    Article  PubMed  CAS  Google Scholar 

  • Gritti A, Parati FA, Cova L, et al. (1996) Multipotent stem-like cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosc 16: 1091–1100.

    CAS  Google Scholar 

  • Gussoni E, Soneoka Y, Strickland CD, et al. (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401: 390–394.

    PubMed  CAS  Google Scholar 

  • Keating A, Powell J, Takahashi M and Singer JW(1984) The generation of human long-term marrow cultures from marrow depleted of Ia positive cells. Blood 64: 1159–1162.

    PubMed  CAS  Google Scholar 

  • Kondo M, Weissmann IL and Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91: 661–672.

    Article  PubMed  CAS  Google Scholar 

  • Kopen GC, Prockop DJ and Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brain. Proc Nat Acad Sci USA 96: 10711–10716.

    Article  PubMed  CAS  Google Scholar 

  • Kritzik MR, Jones E, Chen Z, Krakowski M, Krahl T, Good A, Wright C, Fox H and Sarretnick N (1999) PDX 1 and Msx2 expression in the regenerating and developing pancreas. J Endocrinol 163: 523–530.

    Article  PubMed  CAS  Google Scholar 

  • Lajtha L (1979) Stem Cell Concepts. Differentiation 14: 23–34.

    PubMed  CAS  Google Scholar 

  • Lois C and Alvarez-Buylla A (1993) Proliferating sub-ventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Nat Acad Sci USA 90: 20074–20077.

    Article  Google Scholar 

  • Long G, Madan B, Kurtzberg J, et al. (1999) Unrelated umbilical cord blood transplants in patients with haematologic malignancies and genetic disorders. Blood Nov Suppl Abstract 2544.

  • Marshall E (2000) The business of stem cells. Science 287: 9–11.

    Google Scholar 

  • Marshall E, Howell AH, et al. (1998) Clinical effect of human macrophage inflammatory protein 1-alpha administration in humans: A phase 1 study in cancer patients and normal healthy volunteers with the genetic variant BB 10010. Eur J Cancer 34: 1023–1029.

    Article  PubMed  CAS  Google Scholar 

  • Moles GP and Watt FM (1997) The epidermal stem cell compartment: Variation in expression levels of E. cadherin and catenins within the basal layer of human epidermis. J Histochem Cytochem 45: 867–864.

    PubMed  CAS  Google Scholar 

  • Morshead CM, Reynolds BA, Craig CG, et al. (1994) Neural stem cells in the adult mammalian forebrain: A relatively quiescent subpopulation of subependymal cells, Neuron 13: 1071–1082.

    Article  PubMed  CAS  Google Scholar 

  • Nichols J, Zevnik B, Anastassiadis K, et al. (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor OCT 4. Cell 95: 379–391.

    Article  PubMed  CAS  Google Scholar 

  • Niwa H, Burdon T, Chambers I and Smith A (1998) Self-renewal of pluripotent embryonic stem cells is modulated via activation of STAT 3. Genes Dev 12, 2048–2060.

    PubMed  CAS  Google Scholar 

  • Nusse R (1999) WNT targets. Repression and activation. Trends Genet 15: 1–3.

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW, Freeman TB and Kordower CW (1997) Neural transplantation as a therapy for Parkinson's disease. Adv Neurol 74: 249–269.

    PubMed  CAS  Google Scholar 

  • Osawa M, Hanada K, Hamada H and Nakauchi H (1996) Long term haemopoietic reconstitution by a single CD34-low negative haematopoietic stem cell. Science 273: 242–244.

    PubMed  CAS  Google Scholar 

  • Parker AN and Pragnell IB (1995) Inhibitors of haemopoiesis and their potential clinical relevance. Blood Rev 9: 226–233.

    Article  PubMed  CAS  Google Scholar 

  • Petersen BE, Bowen WC, Patrene KD, et al. (1999) Bone marrow as a potential source of hepatic oval cells. Science 284: 1168–1174.

    Article  PubMed  CAS  Google Scholar 

  • Piacibello W, Sanavio F, Garetto L, et al. (1997) Extensive amplification and self-renewal of human haematopoietic stem cells from cord blood. Blood 89: 2644–2653.

    PubMed  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–146.

    Article  PubMed  CAS  Google Scholar 

  • Reyes M and Verfaille CM (1999) Characterization of multilineage mesodermal progenitor cells in adult bone marrow. Blood Nov Suppl, Abstract 124.

  • Sabata O, Horellu P, Vigne E, et al. (1995) Transplantation to the rat brain of human neural progenitors that were genetically modified using adenovirus. Nat Genet 9: 256–260.

    Article  Google Scholar 

  • Sestan N, Artavanis-Tsakonas S and Rakic P (1999) Contactdependent inhibition of cortical neurite growth mediated by Notch signaling. Science 286: 741–746.

    Article  PubMed  CAS  Google Scholar 

  • Scheffler B, Horn M, Blumke I, et al. (1999) Marrow mindedness: A perspective on neuropoiesis. Trends Neurosc 22: 348–357.

    Article  CAS  Google Scholar 

  • Snyder EY and Vescovi A (2000) The possibilities/perplexities of stem cells. Nat Biotechnol 18: 827–828.

    Article  PubMed  CAS  Google Scholar 

  • Suhonen JO, Paterson DA, Ray J and Gage FH (1996) Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature 383: 624–627.

    Article  PubMed  CAS  Google Scholar 

  • Tanosaki R, Ashihara E, et al. (1999) MIP-1-alpha and LIF protect the repopulating ability of purified murine haemopoietic stem cells in serum-deprived cultures stimulated with SCF and IL-3. Ann Ist Superiore Sanita’ 35: 553–562.

    CAS  Google Scholar 

  • Thomas ED (1991) Frontiers in bone marrow transplantation. Blood Cells 17: 259–267.

    PubMed  CAS  Google Scholar 

  • Thompson JA, Itskovitz-Eldor J, Shapiro SS, et al. (1998) Embryonic stem cells derived from human blastocists. Science 282, 1142–1145.

    Article  Google Scholar 

  • van der Kooy D and Weiss S (2000) Why stem cells? Science 287: 1439–1441.

    Article  PubMed  CAS  Google Scholar 

  • Vescovi AL, Parati EA, Gritti A, et al. (1999) Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp Neurol 156: 71–83.

    Article  PubMed  CAS  Google Scholar 

  • Villa A, Snyder E, Vescovi A and Martinez-Serrano A (2000) Establishment and properties of a growth factor dependent, perpetual human stem cell line from the human CNS. Exp Neurol 161: 67–84.

    Article  PubMed  CAS  Google Scholar 

  • Watt FW and Hogan BLM (2000) Out of Eden: Stem cells and their niches. Science 287: 1427–1430.

    Article  PubMed  CAS  Google Scholar 

  • Zhang SC, Ge B and Duncan ID (1999) Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proc Natl Acad Sci USA 96: 4089–4084.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eridani, S. Versatile stem cells, young and old. A review. Cytotechnology 35, 137–143 (2001). https://doi.org/10.1023/A:1017526408890

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017526408890

Navigation