Skip to main content
Log in

Discovery of numerous clusters of spontaneous mutations in the specific-locus test in mice necessitates major increases in estimates of doubling doses

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Both the precision with which mutations can be quickly identified and the extensive application of the method make results from specific-locus experiments in mice especially important for estimating the doubling dose, which is the radiation exposure that induces a mutation frequency equal to the total spontaneous mutation frequency per generation. Because of gonadal mosaicism and the mechanism by which it occurs, the frequency with which new spontaneous mutations occur per generation is much higher than has been thought. While it will be some time before many of the newly-apparent uncertainties related to understanding this phenomenon can be resolved, consideration of what is known suggests that it would already be reasonable to raise the doubling dose from 1 to 5 Gy for low-dose-rate exposures to X and gamma radiation. Doing so would reduce risk estimates made by the doubling-dose method fivefold. Because the doubling dose for chemical mutagens is also calculated by division of the total spontaneous mutation frequency per generation by the induced mutation frequency per unit of chemical exposure, hereditary risks for chemicals have also been considerably overestimated if they are based on specific-locus data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, D.W. & H.I. Kohn, 1965. Inherited histocompatability changes in progeny of irradiated and unirradiated inbred mice. Genet. Res. 6: 330-340.

    Article  PubMed  CAS  Google Scholar 

  • Batchelor, A.L., R.J.S. Phillips & A.G. Searle, 1969. The ineffectiveness of chronic irradiation with neutrons and gamma rays in inducing mutations in female mice. Brit. J. Radiol. 42:448-451.

    Article  PubMed  CAS  Google Scholar 

  • BEIR III (Committee on the Biological Effects of Ionizing Radiation of the United States National Research Council), 1980. Genetic effects, pp. 71-134 in The Effects on Populations of Exposure to Low Levels of Ionizing Radiations. National Academy Press, Washington, DC.

    Google Scholar 

  • BEIR V (Committee on the Biological Effects of Ionizing Radiation of the United States National Research Council), 1990. Genetic effects of radiation, pp. 65-134 in Health Effects of Exposure to Low Levels of Ionizing Radiation. National Academy Press, Washington, DC.

    Google Scholar 

  • Charny, C.W., A.S. Conston & D.R. Meranze, 1952. Development of the testis. Fertility Sterility 3: 461-479.

    CAS  Google Scholar 

  • Crow, J.F., 1993. How much do we know about spontaneous human mutation rates? Environ. Mol. Mutag. 21: 122-129.

    CAS  Google Scholar 

  • Drost, J.B. & W.R. Lee, 1995. Biological basis of germline mutation: comparisons of spontaneous germline mutation rates among Drosophila, mouse, and human. Environ. Mol. Mutagen. 25: (Suppl. 26), 48-64.

    PubMed  CAS  Google Scholar 

  • Drost, J.B. &W.R. Lee, 1997. The developmental basis of germline mosaicism in Drosophila and mouse. Environ. Mol. Mutag. 29: (Suppl. 28) 13.

    Google Scholar 

  • Ehling, U.H., 1966. Dominant mutations affecting the skeleton in offspring of x-irradiated male mice. Genetics 54: 1381-1389.

    PubMed  Google Scholar 

  • Ehling, U.H.& A. Neuhäuser-Klaus, 1984. Dose-effect relationships of germ-cell mutations in mice, pp. 15-25 in Problems of Threshold in Chemical Mutagenesis, edited by Y. Tazima, S. Kondo and Y. Kuroda. Kokusai-bunken, Tokyo.

  • Ehling, U.H. & A. Neuhäuser-Klaus, 1991. Induction of specific-locus and dominant lethal mutations in male mice by busulfan. Mutat. Res. 249: 285-292.

    PubMed  CAS  Google Scholar 

  • Ehling, U.H. & A. Neuhäuser-Klaus, 1995. Induction of specific-locus and dominant lethal mutations in male mice by n-propyl and isopropyl methanesulfonate. Mutat. Res. 328: 73-82.

    PubMed  CAS  Google Scholar 

  • Favor, J., 1983. A comparison of the dominant cataract and recessive specific-locus mutation rates induced by treatment of male mice with ethylnitrosourea. Mutat. Res. 110: 367-382.

    PubMed  CAS  Google Scholar 

  • Favor, J. & A. Neuhäuser-Klaus, 1994. Genetic mosaicism in the house mouse. Annu. Rev. Genet. 28: 27-47.

    Article  PubMed  CAS  Google Scholar 

  • Lüning, K.G. & A.G. Searle, 1971. Estimates of the genetic risks from ionizing irradiation. Mutation Res. 12: 291-304.

    PubMed  Google Scholar 

  • Muller, H.J., 1954. The nature of the genetic effects produced by radiation, pp. 351-473 in Radiation Biology, Vol. I, Part I, edited by A. Hollaender. McGraw-Hill, New York.

    Google Scholar 

  • Neel, J.V. & S.E. Lewis, 1990. The comparative radiation genetics of humans and mice. Annu. Rev. Genet. 24: 327-362.

    Article  PubMed  CAS  Google Scholar 

  • Neel, J.V., H. Kato & W.J. Schull, 1974. Mortality in the children of atomic bomb survivors and controls. Genetics 76: 311-326.

    PubMed  CAS  Google Scholar 

  • Neel, J.V., W.J. Schull, A.A. Awa, C. Satoh, H. Kato, M. Otake & Y. Yoshimoto, 1990. The children of parents exposed to atomic bombs: estimates of the genetic doubling dose of radiation for humans. Am. J. Hum. Genet. 46: 1053-1072.

    PubMed  CAS  Google Scholar 

  • Russell, L.B., 1964. Genetic and functional mosaicism in the mouse, pp. 153-181 in The Role of Chromosomes in Development, edited by M. Locke. Academic Press, New York.

    Google Scholar 

  • Russell, L.B., 1979. Analysis of the albino-locus region of the mouse. II. Mosaic mutants. Genetics 91: 141-147.

    CAS  Google Scholar 

  • Russell, L.B. & M.H. Major, 1957. Radiation-induced presumed somatic mutations in the house mouse. Genetics 42: 161-175.

    PubMed  CAS  Google Scholar 

  • Russell, L.B. & E.M. Rinchik, 1987. Genetic and molecular characterization of genomic regions surrounding specific loci of the mouse. Banbury Rep. 28: 109-121.

    CAS  Google Scholar 

  • Russell, L.B. & W.L. Russell, 1992. Frequency and nature of specific-locus mutations induced in female mice by radiations and chemicals: a review. Mutat. Res. 296: 107-127.

    PubMed  CAS  Google Scholar 

  • Russell, L.B. & W.L. Russell, 1996. Spontaneous mutations recovered as mosaics in the mouse specific-locus test. Proc. Natl. Acad. Sci. USA 93: 13072-13077.

    Article  PubMed  CAS  Google Scholar 

  • Russell, L.B. & W.L. Russell, 1997. Correction to article ‘spontaneous mutations recovered as mosaics in the mouse specific-locus test’. Proc. Natl. Acad. Sci. USA 94: 4233.

    Article  Google Scholar 

  • Russell, L.B., P.B. Selby, E. von Halle, W. Sheridan & L. Valcovic, 1981. The mouse specific-locus test with agents other than radiations. Interpretation of data and recommendations for future work. Mutat. Res. 86: 329-354.

    PubMed  CAS  Google Scholar 

  • Russell, L.B., J.W. Bangham, K.F. Stelzner & P.R. Hunsicker, 1988. High Frequency of Mosaic Mutants Produced by N-ethyl-N-nitrosourea Exposure of Mouse Zygotes. Proc. Nat. Acad. Sci. USA 85: 9167-9170.

    Article  PubMed  CAS  Google Scholar 

  • Russell, L.B., P.R. Hunsicker & M.D. Shelby, 1992. Melphalan, a second chemical for which specific-locus mutation induction in the mouse is maximum in early spermatids. Mutat. Res. 282: 151-158.

    Article  PubMed  CAS  Google Scholar 

  • Russell, L.B.,W.L. Russell & P.R. Hunsicker, 1996. Mutation clusters in specific-locus experiments. Environ. Mol. Mutagen. 27: (Suppl. 27), 58.

    Google Scholar 

  • Russell, W.L., 1951. X-ray-induced mutations in mice. Cold Spring Harbor Symposia on Quant. Biol. 16: 317-336.

    Google Scholar 

  • Russell, W.L., 1962. An augmenting effect of dose fractionation on radiation-induced mutation rate in mice. Proc. Nat. Acad. Sci. USA 48: 1724-1727.

    Article  PubMed  CAS  Google Scholar 

  • Russell, W.L., 1963. The effect of radiation dose rate and fractionation on mutation in mice, pp. 205-217 in Repair from Genetic Radiation, edited by F. Sobels. Pergamon Press, Oxford.

    Google Scholar 

  • Russell, W.L., 1977. Mutation frequencies in female mice and the estimation of genetic hazards of radiation in women. Proc. Nat. Acad. Sci. USA 74: 3523-3527.

    Article  PubMed  CAS  Google Scholar 

  • Russell, W.L., 1982. Mutation frequencies in male mice and the estimation of genetic hazards of radiation in men. Proc. Nat. Acad. Sci. USA 79: 542-544.

    Article  PubMed  CAS  Google Scholar 

  • Russell, W.L., 1990. Problems and Possibilities in Genetic Risk Estimation, pp. 385-395 in Biology of Mammalian Germ Cell Mutagenesis, edited by J.W. Allen, B.A. Bridges, M.F. Lyon, M.J. Moses & L.B. Russell. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Russell, W.L. & E.M. Kelly, 1982. Mutation frequencies in male mice and the estimation of genetic hazards of radiation in men. Proc. Nat. Acad. Sci. USA 79: 542-544.

    Article  PubMed  CAS  Google Scholar 

  • Russell, W.L., L.B. Russell & E.M. Kelly, 1958. Radiation dose rate and mutation frequency. Science 128: 1546-1550.

    PubMed  CAS  Google Scholar 

  • Sankaranarayanan, K., 1996. Environmental chemical mutagens and genetic risks: Lessons from radiation genetics. Environ. Mol. Mutagen. 28: 65-70.

    Article  PubMed  CAS  Google Scholar 

  • Searle, A.G., 1974. Mutation induction in mice. Adv. Radiat. Biol. 4: 131-207.

    Google Scholar 

  • Sega, G.A., R.E. Sotomayor & J.G. Owens, 1978. A study of unscheduled DNA synthesis induced by x-rays in the germ cells of male mice. Mutat. Res. 49: 239-257.

    PubMed  CAS  Google Scholar 

  • Selby, P.B., 1990a. Experimental induction of dominant mutations in mammals by ionizing radiations and chemicals. Issues and Reviews in Teratology 5: 181-253.

    CAS  Google Scholar 

  • Selby, P.B., 1990b. The importance of the direct method of genetic risk estimation and ways to improve it, pp. 437-449 in Ban-bury Report 34: Biology of Mammalian Germ Cell Mutagenesis, edited by J.W. Allen, B.A. Bridges, M.F. Lyon, M.J. Moses & L.B. Russell. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Selby, P.B., 1996. The doubling dose for radiation, or for any other mutagen, is actually several times larger than has been previously thought if it is based on specific-locus mutation frequencies in mice. Environ. Mol. Mutag. 27: (Suppl. 27), 61.

    Google Scholar 

  • Selby, P.B., 1998. Major impacts of gonadal mosaicism on hereditary risk estimation, origin of hereditary diseases, and evolution. Genetica 102/103: 445-462.

    Article  Google Scholar 

  • Selby, P.B. & S. L. Niemann, 1984. Non-breeding-test methods for dominant skeletal mutations shown by ethylnitrosourea to be easily applicable to offspring examined in specific-locus experiments. Mutat. Res. 127: 93-105.

    PubMed  CAS  Google Scholar 

  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation), 1972. Genetic effects of ionizing radiation, pp. 199-302 in Ionizing Radiation: Levels and Effects. United Nations, New York.

    Google Scholar 

  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation), 1977. Genetic effects of radiation, 425-564 in Sources and Effects of Ionizing Radiation. United Nations, New York.

    Google Scholar 

  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation), 1982. Genetic effects of radiation, pp. 425- 569 in Ionizing Radiation: Sources and Biological Effects. United Nations, New York.

    Google Scholar 

  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation), 1986. Genetic effects of radiation, pp. 27- 164 in Genetic and Somatic Effects of Ionizing Radiation. United Nations, New York.

    Google Scholar 

  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation), 1988. Genetic hazards, pp. 375-403 in Sources, Effects, and Risks of Ionizing Radiation. United Nations, New York.

    Google Scholar 

  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation), 1993a. Hereditary effects of radiation, pp. 729-804 in Sources and Effects of Ionizing Radiation. United Nations, New York.

    Google Scholar 

  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation), 1993b. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly, pp. 4-28 in Sources and Effects of Ionizing Radiation. United Nations, New York.

    Google Scholar 

  • Wichmann, B.A. & I.D. Hill, 1982. Algorithm AS 183: An efficient and portable pseudorandom number generator. Applied Statistics 31: 188-190.

    Article  Google Scholar 

  • Woodruff, R.C., H. Huai & J.N. Thompson Jr., 1996. Clusters of identical new mutation in the evolutionary landscape. Genetica 98: 149-160.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selby, P. Discovery of numerous clusters of spontaneous mutations in the specific-locus test in mice necessitates major increases in estimates of doubling doses. Genetica 102, 463–487 (1998). https://doi.org/10.1023/A:1017070722428

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017070722428

Navigation