Skip to main content
Log in

Vertically-challenged limnology; contrasts between deep and shallow lakes

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Previous work on a set of small lakes, of varying depth, themeresof North West England, has shown that nitrogen availabilitycontrols the summer phytoplankton populations in the deeperones(max depth>3 m) and zooplankton grazing in shallow ones. Themeres have generally high total phosphorus concentrations andthismay be a natural phenomenon dependent on the localgeochemistry.Some anthropogenic eutrophication has occurred, however, andfroma chain of three meres, sewage effluent was diverted in 1991.Theupper lake, Mere Mere, lying above the point of discharge, hasnotchanged in any systematic way since effluent diversion. Themiddlelake, the very shallow Little Mere, has changed markedly inwaterchemistry but not fundamentally in ecosystem structure. It wasandremains a clear-water, macrophyte dominated lake. The thirdlake,the deep Rostherne Mere, has shown no response inchlorophyll a concentrations in four years since effluent diversionthough inthe past two years there appears to be a downward trend intotalphosphorus. The reasons for this are explored in terms of ourunderstanding of lake eutrophication. Comparisons are madewithWhite Mere, a deep groundwater fed lake with a long retentiontimeand a very high total phosphorus concentration. The deep meresmayadd a new dimension to our understanding of natural andanthropogenic eutrophication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, N. J., 1995. Naturally eutrophic lakes: reality, myth or myopia? T.R.E.E. 10: 137–138.

    Google Scholar 

  • Beklioglu, M., 1995.Whole lake and mesocosm studies on the roles of nutrients and grazing in determining phytoplankton crops in a system of shallow and deep lakes. PhD Thesis, University of Liverpool, 425 pp.

  • Beklioglu, M. & B. Moss, 1995. The impact of pH on interactions among phytoplankton algae, zooplankton and perch (Perca fluviatilis) in a shallow, fertile lake. Freshwat. Biol. 33: 497–509.

    Google Scholar 

  • Brinkhurst, R. O, & B. Walsh, 1967. Rostherne Mere, England: a further instance of guanotrophy. J. Fish. Res. Bd Can. 24: 1299–1309.

    Google Scholar 

  • Carvalho, L. R., 1993. Experimental limnology on four Cheshire meres. PhD thesis University of Liverpool, 385 pp.

  • Carvalho, L. R., 1994. Top-down control of phytoplankton in a shallow, hypertrophic lake Little Mere, England. Hydrobiologia 275/276: 53–63.

    Google Scholar 

  • Carvalho, L. R., M. Beklioglu & B. Moss, 1995. Changes in a deep lake following sewage diversion–a challenge to the orthodoxy of external phosphorus control as a restoration strategy. Freshwat. Biol. 34: 399–410.

    Google Scholar 

  • Ganf, G. G. & R. L. Oliver, 1982. Vertical separation of light and available nutrients as a factor causing replacement of green algae by blue green algae in the plankton of a stratified lake. J. Ecol. 70: 829–844.

    Google Scholar 

  • Griffiths, B. M., 1925. Studies on the phytoplankton of the lowland waters of Great Britain. III The phytoplankton of Shropshire, Cheshire and Staffordshire. Bot. J. Linn. Soc. Lond. 47: 75–92.

    Google Scholar 

  • Grimshaw, H. M. & M. J. Hudson, 1970. Some mineral nutrient studies of a lowland mere in Cheshire, England. Hydrobiologia 36: 329–341.

    Google Scholar 

  • Kilinc, S., 1995. Limnological studies on the North West Midland meres, with special reference to Whitemere. PhD Thesis, University of Liverpool, 264 pp.

  • Livingstone, D., 1979. Algal remains in recent lake sediment. PhD thesis, University of Leicester, 157 pp.

  • Marsden, M. W., 1989. Lake restoration by reducing external phosphorus loading: the influence of sedimentary phosphorus release. Freshwat. Biol. 21: 139–162.

    Google Scholar 

  • Moss, B., 1983. The Norfolk Broadland: Experiments in the restoration of a complex wetland. Biol. Rev. 58: 521–561.

    Google Scholar 

  • Moss, B., 1989. Water pollution and the management of ecosystems: a case study of science and scientist. In Grubb, P. J. & R. H. Whittaker (eds), Toward a More Exact Ecology. Thirtieth Symposium of the British Ecological Society. Blackwell Scientific, Oxford; 401–422.

  • Moss, B., 1991. The role of nutrients in determining the structure of lake ecosystems and implications for the restoring of submerged plant communities to lakes which have lost them. International Conference on N, P and Organic matter. Contributions by invited international experts. National Agency for Environmental Protection, Copenhagen, Denmark: 75–86.

  • Moss, B., S. McGowan & I. Carvalho, 1994. Determination of phytoplankton crops by top-down and bottom-up mechanisms in a group of English lakes, the West Midland meres. Limnol. Oceanogr. 39: 1020–1029.

    Google Scholar 

  • Moss, B., S. McGowan, S. Kilinc & L. R. Carvalho, 1992. Current limnological condition of a group of the West Midland meres that bear SSSI status. English Nature, Peterborough, 320 pp.

  • Nelms, R., 1984. Palaeolimnological studies of Rostherne Mere (Cheshire) and Ellesmere (Shropshire). PhD Thesis, Liverpool Polytechnic, 128 pp.

  • Ozimek, T., E. van Donk & R. Gulati, 1990. Can macrophytes be useful in biomanipulation of lakes. Hydrobiologia 200/201: 399–409.

    Google Scholar 

  • Phillips, G. L., D. F. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat. Bot. 4: 103–126.

    Google Scholar 

  • Phillips, W., 1884. The breaking of the Shropshire meres. Trans Shrops. Arch. nat. Hist. Soc. 7: 277–300.

    Google Scholar 

  • Reynolds, C. S., 1971. The ecology of the planktonic blue green algae in the North Shropshire meres, England. Field Stud. 3: 409–432.

    Google Scholar 

  • Reynolds, C. S., 1979. The limnology of the eutrophic meres of the Shropshire–Cheshire plain–a review. Field Stud., 5: 93–173.

    Google Scholar 

  • Reynolds, C. S. & E. G. Bellinger, 1992. Patterns of abundance and dominance of the phytoplankton of Rostherne Mere, England: evidence from an 18-year data set. Aquat. Sci. 54: 10–36.

    Google Scholar 

  • Sas, H., 1989. Lake restoration by reduction of nutrient loadings: expectations, experiences, extrapolations. Academia Verlag Richarz, Sant Augustin, 497 pp.

    Google Scholar 

  • Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. T.R.E.E. 8: 275–279.

    Google Scholar 

  • Schindler, D. W., 1977. The evolution of phosphorus limitation in lakes. Science 195: 897–898.

    Google Scholar 

  • Sinker, C. A., 1962. The North Shropshire Meres and Mosses; a background for ecologists. Field Stud. 1: 101–138.

    Google Scholar 

  • Tallis, J. H., 1973. The terrestrialisation of lake basins in North Cheshire with special reference to the development of a ‘Schwingmoor’ structure. J. Ecol 61: 537–567.

    Google Scholar 

  • Webb, M., 1924. Precious Bane. Jonathan Cape, London, 320 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moss, B., Beklioglu, M., Carvalho, L. et al. Vertically-challenged limnology; contrasts between deep and shallow lakes. Hydrobiologia 342, 257–267 (1997). https://doi.org/10.1023/A:1017059928028

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017059928028

Navigation