Skip to main content

Mexican Meromictic Lakes: What We Know So Far

  • Chapter
  • First Online:
Ecology of Meromictic Lakes

Part of the book series: Ecological Studies ((ECOLSTUD,volume 228))

Abstract

The climate, geology, and physiography of the Mexican territory resulted in a large diversity of inland aquatic bodies. So far, only a few meromictic lakes have been reported from different regions of Mexico , covering a vast range in latitude (≈16–26 °N), longitude (≈87–102 °W), and altitude (≈7–1700 m a.s.l.). The meromixis in Mexican lakes has been caused by one or more of the following factors: (a) coastal lakes where the interaction of freshwater and seawater in karst zones take place, (b) lakes located in semiarid and arid areas where evaporation greatly surpasses precipitation, and (c) deep lakes with relatively small surface area that lack complete circulation. The origin of the Mexican meromictic lakes is primarily due to solution (e.g., sinkholes) and secondarily due to volcanic activity. The Mexican meromictic lakes are small or large, shallow or deep, with either turbid mixolimnion or transparent mixo- and turbid chemolimnion , with diverse temperature profiles from thermal inversions to subsurface maxima or double thermocline, with one and up to three haloclines showing from subtle to quite large salinity ranges and thickness from few cm to up to tens of meters. The DO profiles are typically clinograde or with a subsurface maximum; pH is alkaline in the mixolimnion but varies from acidic to alkaline in the monimolimnion ; and nutrient concentrations range from low to high. It seems the factor(s) leading to meromixis have no effect in producing physical, chemical, or biological characteristics in lakes. Mexican meromictic lakes display a mosaic of environmental and ecological features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcocer J (2002) Surface water—major challenges in Mexico. LakeLine Winter:28–31

    Google Scholar 

  • Alcocer J, Lugo A, Sánchez MR et al (1998) Isabela crater-lake: a Mexican insular saline lake. Hydrobiologia 381:1–7

    Article  CAS  Google Scholar 

  • Alcocer J, Lugo A, Escobar E et al (2000a) Water column stratification and its implications in the tropical warm monomictic Lake Alchichica, Puebla, Mexico. Verh Int Verein Limnol 27:3166–3169

    Google Scholar 

  • Alcocer J, Escobar E, Lugo A (2000b) Water use (and abuse) and its effects on the crater-lakes of Valle de Santiago, Mexico. Lakes Reserv Res Manage 5:145–149

    Article  Google Scholar 

  • Alcocer J, Lugo A, Oliva MG (2002) Los lagos cráter de Valle de Santiago, Guanajuato. In: Lanza G, JL G (eds) Lagos y presas de México. Centro de Ecología y Desarrollo, Mexico, pp 193–212

    Google Scholar 

  • Alcocer J, Oseguera LA, Sánchez G et al (2016) Bathymetric and morphometric surveys of the Montebello Lakes, Chiapas. J Limnol 75(s1):56–65

    Google Scholar 

  • Aranda-Gómez JJ, Chacón-Baca E, Charles-Polo M et al (2009) Collapse structures at the bottom of a recently desiccated maar lake: Rincón de Parangueo maar, Valle de Santiago, México. In: Abstracts of the IAVCEI—CVS—IAS 3IMC Conference, Malargüe, Argentina, 14–17 April 2009

    Google Scholar 

  • Armienta MA, Vilaclara G, De la Cruz-Reyna S et al (2008) Water chemistry of lakes related to active and inactive Mexican volcanoes. J Volcanol Geotherm Res 178:249–258

    Article  CAS  Google Scholar 

  • Cole GA, Minckley WL (1968) Anomalous-thermal conditions in a hypersaline inland pond. J Arizona Acad Sci 5(2):105–107

    Article  Google Scholar 

  • Ferrusquía-Villafranca I (1993) Geology of Mexico—a Synopsis. In: Ramamoorthy TP, Bye R, Lot A et al (eds) Biological diversity of Mexico: origins and distribution. Oxford University Press, New York, pp 3–107

    Google Scholar 

  • García E (1973) Modificación al sistema de clasificación climática de Köeppen. Para adaptarlo a las condiciones de la República Mexicana. Instituto de Geografía UNAM, Mexico

    Google Scholar 

  • Gary MO (2009) Karst hydrogeology and speleogenesis of Sistema Zacatón, Tamaulipas, Mexico. Dissertation, The University of Texas at Austin

    Google Scholar 

  • Gary MO, Fairfield N, Stone WC et al (2008) 3D mapping and characterization of Sistema Zacatón from DEPTHX (DEep Phreatic THermal eXplorer). In: Yuhr LB, Alexander EC Jr, Beck BF (eds) 11th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst. ASCE, pp 202–212

    Google Scholar 

  • Gary MO, Halihan T, Sharp JM Jr (2009) Detection of sub-travertine lakes using electric resistivity imaging, Sistema Zacatón, México. In: White WB (ed) Proceedings of the 15th International Congress of Speleology, Texas

    Google Scholar 

  • Green J (1986) Associations of zooplankton in six crater lakes in Arizona, Mexico and New Mexico. J Zool 208:135–159

    Article  Google Scholar 

  • Housh TB, Aranda-Gómez JJ, Luhr JF (2010) Isla Isabel (Nayarit, México): quaternary alkalic basalts with mantle xenoliths erupted in the mouth of the Gulf of California. J Volcanol Geotherm Res 197:85–107

    Article  CAS  Google Scholar 

  • Kienel U, Wulf Bowen S, Byrne R et al (2009) First lacustrine varve chronologies from Mexico: impact of droughts, ENSO and human activity since AD 1840 as recorded in maar sediments from Valle de Santiago. J Paleolimnol 42:587–609

    Article  Google Scholar 

  • Kienel U, Plessen B, Schettler G et al (2013) Sensitivity of a hypersaline crater lake to the seasonality of rainfall, evaporation, and guano supply. Fundam Appl Limnol 183(2):135–152

    Article  CAS  Google Scholar 

  • Komárek J, Komárková-Legnerová J (2002) Contribution to the knowledge of planktic cyanoprokaryotes from central Mexico. Preslia 74:207–233

    Google Scholar 

  • Lewis WM Jr (1996) Tropical lakes: how latitude makes a difference. In: Schiemer F, Boland KT (eds) Perspectives in tropical limnology. SPB Academic Publishing, Amsterdam, pp 43–64

    Google Scholar 

  • Lewis WM Jr (2000) Basis for the protection and management of tropical lakes. Lakes Reserv Res Manage 5:35–48

    Article  Google Scholar 

  • Minckley WL (1969) Environments of the Bolsón of Cuatro Ciénegas, Coahuila, México, with special reference to the aquatic biota. University of Texas, El Paso, TX

    Google Scholar 

  • Romero-Viana L, Kienel U, Sachse D (2012) Lipid biomarker signatures in a hypersaline lake on Isabel Island (Eastern Pacific) as a proxy for past rainfall anomaly (1942–2006 AD). Palaeogeogr Palaeoclimatol Palaeoecol 350–352:49–61

    Article  Google Scholar 

  • Romero-Viana L, Kienel U, Wilkes H et al (2013) Growth-dependent hydrogen isotopic fractionation of algal lipid biomarkers in hypersaline Isabel Lake (México). Geochim Cosmochim Acta 106:490–500

    Article  CAS  Google Scholar 

  • Schmitter-Soto JJ, Comín FA, Escobar-Briones E et al (2002) Hydrogeochemical and biological characteristics of cenotes in the Yucatan Peninsula (SE Mexico). Hydrobiologia 467:215–228

    Article  CAS  Google Scholar 

  • Stewart KM, Walker KF, Likens GE (2009) Meromictic lakes. In: Likens GE (ed) Encyclopedia of inland waters. Elsevier, Oxford, pp 177–190

    Google Scholar 

  • Stoessell RK, Mooore YH, Coke JG (1993) The occurrence and effect of sulfate reduction and sulfide oxidation on coastal limestone dissolution in Yucatan cenotes. Ground Water 31(4):566–575

    Article  CAS  Google Scholar 

  • Stoessell RK, Coke JG, Easley DH (2002) Localized thermal anomalies of coastal Yucatan sinkholes. Ground Water 40(4):416–424

    Article  CAS  PubMed  Google Scholar 

  • Torres-Talamante O, Alcocer J, Beddows PA et al (2011) The role of chemolimnion in meromictic cenotes of the Yucatan Peninsula, Mexico. Hydrobiologia 677:107–127

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Alcocer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Alcocer, J. (2017). Mexican Meromictic Lakes: What We Know So Far. In: Gulati, R., Zadereev, E., Degermendzhi, A. (eds) Ecology of Meromictic Lakes. Ecological Studies, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-319-49143-1_12

Download citation

Publish with us

Policies and ethics