Skip to main content
Log in

Ecology of mixotrophic flagellates with special reference to Chrysophyceae in Danish lakes

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Although intensively studied in Danish lakes, Chrysophytes constituted only a minor part of the phytoplankton in the lakes studied in the Danish Survey Programme of the Water Environment during 1989–94. However, in the lakes Holm Sø, Maglesø by Brorfelde, and Bastrup Sø, populations of naked and loricated (mixotrophic) Chrysophytes exhibited 2–3 maxima yr-1 and contributed 2–36% to the yearly mean phytoplankton biomass. The mixotrophic Chrysophyte biomass in these lakes increased with increasing biomass of the entire phytoplankton community up to 5 mm3 l-1. Above this phytoplankton biomass, the mixotrophic Chrysophyte biomass became irregular and scarce.

Mixotrophic Chrysophytes were mainly found at TP concentrations below 0.050 mg l-1 and at SRP concentrations below or at the detection limit (0.010 mg l-1). There was a slight increase in the biomass when SRP climbed over the detection limit but above a concentration of 0.015 mg SRP l-1, mixotrophic Chrysophytes disappeared. Mixotrophic Chrysophytes increased in the interval of 2–6 mg COD l-1 and in the interval of 2.5–6 mg suspended matter l-1. The mixotrophic Chrysophytes are hardly dependent on bacteria uptake for C but rather for P. Under substrate limitation, bacteria have a much lower C:P ratio than the minimum C:P ratio (Redfield ratio) of 106:1 for the optimum growth of algae. Under P-limitation, the C:P ratio of algae is normally higher. The difference in C:P ratio between bacteria and algae makes it possible for mixotrophic Chrysophytes to solve their demand of P by ingestion of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, R. A. & R. Wetherbee, 1992. Microtubules of the flagellar apparatus are active during prey capture in the chrysophycean alga Epipyxis pulcra. Protoplasma 166: 8–20.

    Article  Google Scholar 

  • Bird, D. F. & J. Kalff, 1986. Bacterial grazing by planktonic lake algae. Science 231: 493–495. 337

    PubMed  Google Scholar 

  • Bird, D. F. & J. Kalff, 1987. Algal phagotrophy: Regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnol. Oceanogr. 32: 277–284.

    CAS  Google Scholar 

  • Bird, D. F. & J. Kalff, 1989. Phagotrophic sustainance of a metalimnic phytoplankton peak. Limnol. Oceanogr. 34: 155–162.

    Google Scholar 

  • Bockstahler, K. R. & D.W. Coats, 1993a. Grazing of the Dinoflagellate Gymnodinium sanguineum on ciliate populations of Chesapeake Bay. Mar. Biol. (Berlin) 116: 477–487.

    Article  Google Scholar 

  • Bockstahler, K. R. & D. W. Coats, 1993b. Spatial and temporal aspects ofmixotrophy in Chesapeake Bay Dinoflagellates. J. Euc. Microbiol. 40: 49–60.

    Google Scholar 

  • Carpenter, E. J., S. Janson, R. Boje, F. Pollehne & J. Chang, 1995. The Dinoflagellate Dinophysis norvegica: biological and ecological observations in the Baltic Sea. Europ. J. Phycol. 30: 1–9.

    Google Scholar 

  • Currie, D. J. & J. Kalff, 1984a. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnol. Oceanogr. 29: 298–310.

    CAS  Google Scholar 

  • Currie, D. J. & J. Kalff, 1984b. The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in freshwater. Limnol. Oceanogr. 29: 311–321.

    CAS  Google Scholar 

  • Dansk Standardiseringsråd, 1975a. Water analysis. Determination of nitrogen content by peroxodisulphate. Dansk Standard DS 221. 1. udg.

  • Dansk Standardiseringsråd, 1975b. Water analysis. Determination of the sum of nitriteand nitratenitrogen. Dansk Standard DS 223. 1. udg.

  • Dansk Standardiseringsråd, 1975c. Water analysis. Determination of ammonianitrogen. Dansk Standard DS 224. 1. udg.

  • Dansk Standardiseringsråd, 1977a. Water analysis. Determination of alkalinity. Dansk Standard DS 253. 1. udg.

  • Dansk Standardiseringsråd, 1977b. Water analysis. Components of the carbonatesystem (Calculation method). Dansk Standard DS 256. 1. udg.

  • Dansk Standardiseringsråd, 1978. Water analysis. Determination of pH. Dansk Standard DS 287. 2. udg.

  • Dansk Standardiseringsråd, 1984. Water analysis. Chloride, potentiometric method. Dansk Standard DS 239. 1. udg.

  • Dansk Standardiseringsråd, 1985a. Water analysis. Phosphate. Photometric method. Dansk Standard DS 291. 2. udg.

  • Dansk Standardiseringsråd, 1985b. Water analysis. Total phosphor. Photometric method. Dansk Standard DS 292. 2. udg.

  • Dodge, J. D. & R. M. Crawford, 1970. The morphology and fine structure of Ceratium hirundinella (Dinophyceae). J. Phycol. 6: 137–149.

    Article  Google Scholar 

  • Dolan, J., 1993. Mixotrophy in ciliates: A review of Chlorella symbiosis and chloroplast retension. Mar. Microb. Food Webs 6: 115–132.

    Google Scholar 

  • Eloranta, P. & M. Järvinen, 1991. Growth of Gonyostomum semen (EHR.) DIESING (Raphidophyceae): Results from culture experiments. Verh. int. Ver. Limnol. 24: 2657–2659.

    Google Scholar 

  • Eloranta, P. & A. Räike, 1995. Light as a factor affecting the vertical distribution of Gonyostomum semen (EHR.) DIESING (Raphidophyceae) in lakes. Aqua Fenn. 25: 15–22.

    Google Scholar 

  • Fields, S. D. & R. G. Rhodes, 1991. Ingestion and retention of Chroomonas spp. (Cryptophyceae) by Gymnodinium acidotum (Dinophyceae). J. Phycol. 27: 525–529.

    Article  Google Scholar 

  • Gaines, G. & M. Elbrächter 1987. Heterotrophic nutrition. In: F. J. R. Taylor (ed.), The Biology of Dinoflagellates. Bot. Monogr. 21. Blackwell Scientific Publications, 785 pp.

  • Hansen, L. Reersø & R. Stehn Hansen, 1995. Bastrup Sø – tilstand åog udvikling 1994. Teknik & Miljø, Frederiksborg Amt. Vandmiljøoverv gning nr. 20, 103 pp.

  • Havskum, H., 1996. Ecological importance of phagotrophic, pigmented flagellates (mixotrophs) in marine plankton. Ph.D. thesis. Univ. of Copenhagen.

  • Jacobson, D. M. & R. A. Andersen, 1994. The discovery of mixotrophy in photosynthetic species of Dinophysis (Dinophyceae): Light and electron microscopial observation of food vacuoles Dinophysis acuminata, D. norvegica and two heterotrophic dinophysoid dinoflagellates. Phycologia 33: 97–110.

    Google Scholar 

  • Jensen, J. P., E. Jeppesen, M. Søndergaard, J. Windolf, T. Lauridsen & L. Sortkjær, 1995. Vandmiljøplanens Overvågningsprogram 1994. Ferske vandområder. Søer. Faglig rapport fra DMU, nr. 139, 115 pp.

  • Jones, H., 1990. Particle ingestion by a marine species of Chrysochromulina (Prymnesiophyceae). Abstract from: First International Symp. on Free-living Heterotrophic Flagellates, Aug. 1990, Helsingør, Denmark.

  • Jones, R. I., 1995. Mixotrophy in phytoplankton protists as a spectrum of nutritional strategies. Mar. Microb. Food Webs 8: 87–96.

    Google Scholar 

  • Jones, R. I. & S. Rees, 1995a. Characteristics of particle uptake by the phagotrophic phytoflagellate Dinobryon divergens. Mar. Microb. Food Webs 8: 97–110.

    Google Scholar 

  • Jones, R. I. & S. Rees, 1995b. Influence of temperature and light on particle ingestion by the freshwater phytoflagellate Dinobryon. Arch. Hydrobiol. 132: 203–211.

    Google Scholar 

  • Jones, H. L. J., P. Durjun, B. S. C. Leadbeater & J. C. Green, 1995. The relationship between photoacclimation and phagotrophy with respect to chlorophyll a, carbon and nitrogen content, and cell size of Chrysochromulina brevifilum (Prymnesiophyceae). Phycologia 34: 128–134.

    Google Scholar 

  • Jones, H. L. J., B. S. C. Leadbeater & J. C. Green, 1993. Mixotrophy inmarine species of Chrysochromulina (Prymnesiophyceae): Ingestion and digestion of a small green flagellate. J. mar. biol. Ass. U.K. 73: 283–296.

    Article  Google Scholar 

  • Kawachi, M. & I. Inouye, 1995. Functional roles of the haptonema and spine scales in the feeding process of Chrysochromulina spinifera (Fournier) Pienaar et Norris, (Haptophyta = Prymnesiophyta). Phycologia 34: 193–200.

    Google Scholar 

  • Keller, M. D., L. P. Shapiro, E.M. Haugen, T. L. Cucci, E. B. Sherr & B. F. Sherr, 1994. Phagotrophy of fluorescently labeled bacteria by an oceanic phytoplankter. Microb. Ecol. 28: 39–52.

    Article  Google Scholar 

  • Kirchhoff, B. & B. Meyer, 1995. A new phagotrophic species of Katodinium (Dinophyceae) from hypertrophic shallow lakes in North Germany. Nova Hedwigia 60: 179–185.

    Google Scholar 

  • Kristiansen, J., 1991. A checklist of Danish freshwater Chrysophytes. Chrysophyceae – Synurophyceae – Prymnesiophyceae– Bicocoecophyceae. Third ed. Institut for Sporeplanter. Univ. Copenhagen, 54 pp.

  • McKenzie, C. H., D. Deibel, M. A. Paranjape & R. J. Thompson, 1995. The marine mixotroph Dinobryon balticum (Chrysophyceae): Phagotrophy and survival in a cold ocean. J. Phycol. 31: 19–24.

    Article  Google Scholar 

  • Olrik, K. & A. Nauwerck, 1993. Stress and disturbance in the phytoplankton community of a shallow, hypertrophic lake. Hydrobiologia 249: 15–24.

    Article  CAS  Google Scholar 

  • Porter, K. G., 1988. Phagotrophic phytoflagellates in microbial food webs. Hydrobiologia 159: 89–97.

    Google Scholar 

  • Rees, S. & R. I. Jones, 1992. Phagotrophic nutrition in phytoflagellates. Br. Phycol. J. 27: 100.

    Google Scholar 

  • Salonen, K. & S. Jokinen 1988. Flagellate grazing on bacteria in a small dystrophic lake. Hydrobiologia 161: 203–209.

    Article  Google Scholar 

  • Sanders, R.W., 1991. Trophic strategies among heterotrophic flagellates. In D. J. Patterson & J. Larsen (eds), The Biology of Freeliving Heterotrophic Flagellates. The Systematics Ass., Spec.Vol. 45, Clarendon Press, Oxford: 21–38.

    Google Scholar 

  • Sanders, R.W. & K. G. Porter, 1988. Phagotrophic phytoflagellates. Adv. Microb. Ecol. 10: 167–192.

    Google Scholar 

  • Sibbald, M. J. & L. J. Albright, 1992. The influence of light and nutrients on the nanoflagellate, Ochromonas sp. Mar. Microb. Food Webs 5: 39–48.

    Google Scholar 

  • Smith, V. H., 1990. Phytoplankton responses to eutrophication in inland waters. In I. Atatsuka (ed.), Introduction to Applied Phycology. SPB Academic Publishing bv, The Hague, The Netherlands: 231–249.

    Google Scholar 

  • Turner, J. T. & J. C. Roff, 1995. Trophic levels and trophospecies in marine plankton: Lessons from the microbial food web. Mar. Microb. Food Webs 7: 225–248.

    Google Scholar 

  • Vadstein, O., A. Jensen, Y. Olsen & H. Reinertsen, 1988. Growth and phosphorus status of limnetic phytoplankton and bacteria. Limnol. Oceanogr. 33: 489–503.

    Article  CAS  Google Scholar 

  • Veen, A., 1991. Ecophysiological studies on the phagotrophic phytoflagellate Dinobryon divergens Imhof. Doc. Dissert., Dept. Fundament. Appl. Ecol., Univ. Amsterdam, Kruislaan 320, 1098 SM Amsterdam, The Netherlands, 125 pp.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olrik, K. Ecology of mixotrophic flagellates with special reference to Chrysophyceae in Danish lakes. Hydrobiologia 369, 329–338 (1998). https://doi.org/10.1023/A:1017045809572

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017045809572

Navigation