Skip to main content
Log in

Major impacts of gonadal mosaicism on hereditary risk estimation, origin of hereditary diseases, and evolution

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The specific-locus test in mice is by far the most extensively applied method for precisely defining gene mutation frequencies in mammals. Computer simulations of control experiments involving 57.4 million offspring, based on vast amounts of historical data, show that because of gonadal mosaicism, the total frequency of spontaneous mutations per generation is much higher than has been thought. The estimated combined spontaneous mutation frequency for both sexes for the seven genes tested in specific-locus experiments is 39.6 × 10−5 mutation/gamete. Division of this frequency by the combined induced mutation frequencies in parents of both sexes results in an estimate of the doubling-dose (DD) of from 5.4 to 7.7 Gy. For decades, the DD has been thought to be about 1 Gy. As the DD increases, estimates of hereditary risk that are based upon it decrease. Thus, one important ramification of this new understanding is that estimates of the hereditary risk to humans from radiation, commonly made by the doubling-dose (DD) approach, are probably at least five times too high. It also appears that gonadal mosaicism is likely to play a much more important role both in evolution and the origin of hereditary diseases than has been appreciated in the past.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D., J.B. Bishop, R.C. Garner, P. Ostrosky-Wegman & P.B. Selby, 1995. Cyclophosphamide: review of its mutagenicity for an assessment of potential germ cell risks. Mutat. Res. 330: 115-181.

    PubMed  CAS  Google Scholar 

  • Batchelor, A.L., R.J.S. Phillips & A.G. Searle, 1969. The ineffectiveness of chronic irradiation with neutrons and gamma rays in inducing mutations in female mice. Brit. J. Radiol. 42: 448-451.

    Article  PubMed  CAS  Google Scholar 

  • BEIR III (Committee on the Biological Effects of Ionizing Radiation of the United States National Research Council), 1980. Genetic effects, pp. 71-134 in The Effects on Populations of Exposure to Low Levels of Ionizing Radiations. National Academy Press, Washington, DC.

    Google Scholar 

  • BEIR V (Committee on the Biological Effects of Ionizing Radiation of the United States National Research Council), 1990. Genetic effects of radiation, pp. 65-134 in Health Effects of Exposure to Low Levels of Ionizing Radiation. National Academy Press, Washington, DC.

    Google Scholar 

  • Cohn, D.H., B.J. Starman, B. Blumberg & P.H. Byers, 1990. Recurrence of lethal osteogenesis imperfecta due to parental mosaicism for a dominant mutation in a human type I collagen gene (COL1A1). Am. J. Hum. Genet. 46: 591-601.

    PubMed  CAS  Google Scholar 

  • Crow, J.F., 1993. How much do we know about spontaneous human mutation rates? Environ. Mol. Mutagen. 21: 122-129.

    PubMed  CAS  Google Scholar 

  • Drost, J. B. & W. R. Lee, 1995. Biological basis of germline mutation: comparisons of spontaneous germline mutation rates among Drosophila, mouse, and human. Environ. Mol. Mutagen. 25: (Suppl. 26), 48-64.

    PubMed  CAS  Google Scholar 

  • Drost, J.B. & W. R. Lee, 1997. The developmental basis of germline mosaicism in Drosophila and mouse. Environ. Molec. Mutag. 29: (Suppl. 28) 13.

    Google Scholar 

  • Dubrova, Y.E., A.J. Jeffreys & A.M. Malashenko, 1993. Mouse min-isatellite mutations induced by ionizing radiation. Nature Genetics 5: 92-94.

    Article  PubMed  CAS  Google Scholar 

  • Ehling, U. H. & A. Neuhäuser-Klaus, 1984. Dose-effect relationships of germ-cell mutations in mice, pp. 15-25 in Problems of Threshold in Chemical Mutagenesis, edited by Y. Tazima, S. Kondo and Y. Kuroda. Kokusaibunken, Tokyo.

    Google Scholar 

  • Ehling, U.H. & A. Neuhäuser-Klaus, 1991. Induction of specific-locus and dominant lethal mutations in male mice by busulfan. Mutat. Res. 249: 285-292.

    PubMed  CAS  Google Scholar 

  • Ehling, U. H. & A. Neuhäuser-Klaus, 1995. Induction of specific-locus and dominant lethal mutations in male mice by n-propyl and isopropyl methanesulfonate. Mutat. Res. 328: 73-82.

    PubMed  CAS  Google Scholar 

  • Favor, J. & A. Neuhäuser-Klaus, 1994. Genetic mosaicism in the house mouse. Annu. Rev. Genet. 28: 27-47.

    Article  PubMed  CAS  Google Scholar 

  • Hall, J.G., 1988. Review and hypotheses: somatic mosaicism: observations related to clinical genetics. Am. J. Hum. Genet. 43: 355- 363.

    PubMed  CAS  Google Scholar 

  • Neel, J.V. & S.E. Lewis, 1990. The comparative radiation genetics of humans and mice. Annu. Rev. Genet. 24: 327-362.

    Article  PubMed  CAS  Google Scholar 

  • Neel, J.V., H. Kato & W.J. Schull, 1974. Mortality in the children of atomic bomb survivors and controls. Genetics 76: 311-326.

    PubMed  CAS  Google Scholar 

  • Neel, J.V., W.J. Schull, A.A. Awa, C. Satoh, H. Kato, M. Otake & Y. Yoshimoto, 1990. The children of parents exposed to atomic bombs: estimates of the genetic doubling dose of radiation for humans. Am. J. Hum. Genet. 46: 1053-1072.

    PubMed  CAS  Google Scholar 

  • Raghunath, M., K. Mackay, R. Dalgleish & B. Steinmann, 1995. Genetic counselling on brittle grounds: recurring osteogenesis imperfecta due to parental mosaicism for a dominant mutation. Eur. J. Pediatr. 154: 123-129.

    PubMed  CAS  Google Scholar 

  • Rugh, R., 1990. The Mouse Its Reproduction and Development. Oxford University, New York.

    Google Scholar 

  • Russell, L.B., 1964. Genetic and functional mosaicism in the mouse, pp. 153-181 in The Role of Chromosomes in Development, edited by M. Locke. Academic Press, New York.

    Google Scholar 

  • Russell, L.B., 1979. Analysis of the albino-locus region of the mouse. II. Mosaic mutants. Genetics 91: 141-147.

    PubMed  CAS  Google Scholar 

  • Russell, L. B. & W. L. Russell, 1992. Frequency and nature of specific-locus mutations induced in female mice by radiations and chemicals: a review. Mutat. Res. 296: 107-127.

    PubMed  CAS  Google Scholar 

  • Russell, L.B. & W.L. Russell, 1996. Spontaneous mutations recovered as mosaics in the mouse specific-locus test. Proc. Natl. Acad. Sci. USA 93: 13072-13077.

    Article  PubMed  CAS  Google Scholar 

  • Russell, L.B. & W.L. Russell, 1997. Correction to article ‘spontaneous mutations recovered as mosaics in the mouse specific-locus test’. Proc. Natl. Acad. Sci. USA 94: 4233.

    Article  Google Scholar 

  • Russell, L.B., P.R. Hunsicker & M.D. Shelby, 1992. Melphalan, a second chemical for which specific-locus mutation induction in the mouse is maximum in early spermatids. Mutat. Res. 282: 151-158.

    Article  PubMed  CAS  Google Scholar 

  • Russell, L.B., W.L. Russell & P.R. Hunsicker, 1996. Mutation clusters in specific-locus experiments. Environ. Mol. Mutagen. 27: (Suppl. 27), 58.

    Google Scholar 

  • Russell, W. L., 1951. X-ray-induced mutations in mice. Cold Spring Harbor Symposia on Quant. Biol. 16: 317-336.

    Google Scholar 

  • Russell, W.L., 1962. An augmenting effect of dose fractionation on radiation-induced mutation rate in mice. Proc. Nat. Acad. Sci. USA 48: 1724-1727.

    Article  PubMed  CAS  Google Scholar 

  • Russell, W.L., 1963. The effect of radiation dose rate and fractionation on mutation in mice, pp. 205-217 in Repair from Genetic Radiation, edited by F. Sobels. Pergamon Press, Oxford.

    Google Scholar 

  • Russell, W.L., 1977. Mutation frequencies in female mice and the estimation of genetic hazards of radiation in women. Proc. Nat. Acad. Sci. USA 74: 3523-3527.

    Article  PubMed  CAS  Google Scholar 

  • Russell, W.L., 1982. Mutation frequencies in male mice and the estimation of genetic hazards of radiation in men. Proc. Nat. Acad. Sci. USA 79: 542-544.

    Article  PubMed  CAS  Google Scholar 

  • Russell, W. L. & E.M. Kelly, 1982. Mutation frequencies in male mice and the estimation of genetic hazards of radiation in men. Proc. Nat. Acad. Sci. USA 79: 542-544.

    Article  PubMed  CAS  Google Scholar 

  • Searle, A.G., 1974. Mutation induction in mice. Adv. Radiat. Biol. 4: 131-207.

    Google Scholar 

  • Selby, P.B., 1973. X-ray-induced specific-locus mutation rate in newborn male mice. Mutat. Res. 18: 63-75.

    PubMed  CAS  Google Scholar 

  • Selby, P.B., 1998. Discovery of numerous clusters of spontaneous mutations in the specific-locus test in mice necessitates major increases in estimates of doubling doses. Genetica 102/103: 463- 487.

    Article  PubMed  Google Scholar 

  • Selby, P.B., S.S. Lee, E.M. Kelly, J.W. Bangham, G.D. Raymer & P.R. Hunsicker, 1991. Specific-locus experiments show that female mice exposed near the time of birth to low-LET ionizing radiation exhibit both a low mutational response and a dose-rate effect. Mutat. Res. 249: 351-369.

    PubMed  CAS  Google Scholar 

  • Tegelenbosch, R.A.J. & D.G. de Rooij, 1993. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat. Res. 290: 193-200.

    PubMed  CAS  Google Scholar 

  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation), 1972. Genetic effects of ionizing radiation, pp. 199-302 in Ionizing Radiation: Levels and Effects. United Nations, New York.

    Google Scholar 

  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation), 1993. Hereditary effects of radiation, pp. 729-804 in Sources and Effects of Ionizing Radiation. United Nations, New York.

    Google Scholar 

  • Wichmann, B.A. & I.D. Hill, 1982a. Algorithm AS 183: An efficient and portable pseudo-random number generator. Applied Statistics 31: 188-190.

    Article  Google Scholar 

  • Wichmann, B.A. & I.D. Hill, 1982b. A Pseudorandom Number Generator. National Physical Laboratory(Teddington, Middle-sex, UK) Report DITC 6/82.

    Google Scholar 

  • Woodruff, R.C., H. Huai & J.N. Thompson Jr., 1996. Clusters of identical new mutation in the evolutionary landscape. Genetica 98: 149-160.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selby, P. Major impacts of gonadal mosaicism on hereditary risk estimation, origin of hereditary diseases, and evolution. Genetica 102, 445–462 (1998). https://doi.org/10.1023/A:1017018705590

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017018705590

Navigation