Skip to main content
Log in

Risk of population extinction from fixation of deleterious and reverse mutations

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

A model is developed for alternate fixations of mildly deleterious and wild-type alleles arising by forward and reverse mutation in a finite population. For almost all parameter values, this gives an equilibrium load that agrees closely with the general expression derived from diffusion theory. Nearly neutral mutations with selection coefficient a few times larger than 1/(2Ne) do the most damage by increasing the equilibrium load. The model of alternate fixations facilitates dynamical analysis of the expected load and the mean time to extinction in a population that has been suddenly reduced from a very large size to a small size. Reverse mutation can substantially improve population viability, increasing the mean time to extinction by an order of magnitude or more, but because many mutations are irreversible the effects may not be large. Populations with initially high mean fitness and small effective size, Ne below a few hundred individuals, may be at serious risk of extinction from fixation of deleterious mutations within 103 to 104 generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M. & I.A. Stegun, eds., 1972. Handbook of Mathematical Functions. Dover, New York.

    Google Scholar 

  • Crow, J.F., 1993. Mutation, mean fitness, and genetic load. Oxford Surv. Evol. Biol. 9: 3-42.

    Google Scholar 

  • Crow, J.F., 1970. An Introduction to Population Genetics Theory. Harper & Row, New York.

    Google Scholar 

  • Crow, J.F.& M.J. Simmons, 1983. The mutation load in Drosophila, pp. 1-35 in The genetics and biology of Drosophila, edited byM. Ashburner, H.L. Carson & J.N. Thompson, Jr. Vol. 3c. Academic Press, New York.

    Google Scholar 

  • Dobzhansky, Th., 1970. Genetics of the Evolutionary Process. Columbia University Press, New York.

    Google Scholar 

  • Franklin, I.R., 1980. Evolutionary change in small populations, pp. 135-150. in Conservation biology, an evolutionaryecological perspective, edited by M.E. Soul´e & B.A. Wilcox. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Gregory, W.C., 1965. Mutation frequency, magnitude of change and the probability of improvement in adaptation. Radiation Botany 5 (Suppl.): 429-441.

    Google Scholar 

  • Haldane, J.B.S., 1937. The effect of variation on fitness. Am. Nat. 71: 337-349.

    Article  Google Scholar 

  • Houle, D., D.K. Hoffmaster, S. Assimacopoulous & B. Charlesworth, 1992. The genomic mutation rate for fitness. Nature 359: 58-60.

    Article  PubMed  CAS  Google Scholar 

  • Houle, D., K.A. Hughes, D.A. Hoffmaster, J. Ihara, S. Assimacopoulos, D. Canada & B. Charlesworth, 1994. The effects of spontaneousmutation on quantitative traits. I.Variances and covariances of life history traits. Genetics 138: 773-785.

    PubMed  CAS  Google Scholar 

  • Johnston, M.O. & D.J. Schoen, 1995. Mutation rates and dominance levels of genes affecting total fitness in two angiosperm species. Science 267: 226-229.

    CAS  Google Scholar 

  • Keightley, P.D., 1994. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics 138: 1315-1322.

    PubMed  CAS  Google Scholar 

  • Kimura, M., 1979. Model of effectively neutral mutations in which selective constraint is incorporated. Proc. Natl. Acad. Sci. USA 75: 1934-1937.

    Article  Google Scholar 

  • Kimura, M., T. Maruyama & J.F. Crow, 1963. The mutation load in small populations. Genetics 48: 1303-1312.

    PubMed  CAS  Google Scholar 

  • Kimura, M. & T. Ohta, 1969. The average number of generations until fixation of a mutant gene in a finite population. Genetics 61: 763-771.

    Google Scholar 

  • Lande, R., 1988. Genetics and demography in biological conservation. Science 241: 1455-1460

    PubMed  CAS  Google Scholar 

  • Lande, R., 1994. Risk of population extinction from fixation of new deleterious mutations. Evolution 48: 1460-1469.

    Article  Google Scholar 

  • Lande, R., 1995. Mutation and conservation. Conserv. Biol. 9: 782-791.

    Article  Google Scholar 

  • Lynch, M., J. Conery & R. Bürger, 1995a. Mutation accumulation and the extinction of small populations. Am. Nat. 146: 489-518.

    Article  Google Scholar 

  • Lynch, M., J. Conery & R. Bürger, 1995b. Mutational meltdown in sexual populations. Evolution 49: 1067-1080.

    Article  Google Scholar 

  • Mackay, T.F.C., R.F. Lyman & M.S. Jackson, 1992. Effects of Pelement insertions on quantitative traits in Drosophila melanogaster. Genetics 130: 315-332.

    PubMed  CAS  Google Scholar 

  • Mukai, T., S.I. Chigusa, L.E. Mettler & J.F. Crow, 1972. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 72: 335-355.

    PubMed  CAS  Google Scholar 

  • Mukai, T., 1979. Polygenic mutation, pp. 177-196 in Quantitative genetic variation, edited by J.N. Thompson, Jr. & J.M. Thoday. Academic Press, New York.

    Google Scholar 

  • Muller, H.J., 1950. Our load of mutations. Am. J. Hum. Genet. 2: 111-176.

    PubMed  CAS  Google Scholar 

  • Muller, H.J. & I.I. Oster, 1956. Principles of back mutation as observed in Drosophila and other organisms, pp. 407-413 in Proc. Intl. Conf. Radiobiol., Stockholm.

  • Ohnishi, O., 1977a. Spontaneous and ethyl methanesulfonateinduced mutations controlling viability in Drosophila melanogaster. II. Homozygous effect of polygenic mutations. Genetics 87: 529-545.

    PubMed  CAS  Google Scholar 

  • Ohnishi, O., 1977b. Spontaneous and ethyl methanesulfonateinduced mutations controlling viability in Drosophila melanogaster. II. Heterozygous effect of polygenic mutations. Genetics 87: 547-556.

    PubMed  CAS  Google Scholar 

  • Santiago, E., J. Albornoz, A. Dominguez, M.A. Toro & C. LopezFanjul, 1992. The distribution of effects of spontaneous mutations on quantitative traits and fitness. Genetics 132: 771-781.

    PubMed  CAS  Google Scholar 

  • Schlager, G. & M.M. Dickie, 1971. Natural mutation rates in the house mouse. Estimates for five specific loci and dominant mutations. Mutat. Res. 11: 89-96.

    PubMed  CAS  Google Scholar 

  • Schultz, S.T. & M. Lynch, 1997. Mutation and extinction: the role of variable mutational effects, synergistic epistasis, beneficial mutations, and degree of outcrossing. Evolution 51: 1363-1371.

    Article  Google Scholar 

  • Shrimpton, A.E. & A. Robertson, 1988. The isolation of polygenic factors controlling bristle score in Drosophila melanogaster. Genetics 118: 445-459.

    Google Scholar 

  • Simmons, M.J. & J.F. Crow, 1977. Mutations affecting fitness in Drosophila populations. Annu. Rev. Genet. 11: 49-78.

    Article  PubMed  CAS  Google Scholar 

  • Soulé, M.E., 1980. Thresholds for survival: maintaining fitness and evolutionary potential, pp. 151-170 in Conservation biology, an evolutionaryecological perspective, edited by M.E. Soulé & B. A. Wilcox. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Yanovsky, C., H. Berger & W.J. Brammer, 1969. In vivo studies on the genetic code. Proc. XII. Intl. Congr. Genet. 3: 155-165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lande, R. Risk of population extinction from fixation of deleterious and reverse mutations. Genetica 102, 21–27 (1998). https://doi.org/10.1023/A:1017018405648

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017018405648

Navigation