Skip to main content
Log in

Mutation and selection at silent and replacement sites in the evolution of animal mitochondrial DNA

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Two patterns are presented that illustrate the interaction of mutation and selection in the evolution of animal mtDNA: 1) variation among taxa in the ratio of polymorphism to divergence (rpd) at silent and replacement sites in protein-coding genes, and 2) strand-differences in polymorphism and divergence at ‘silent’ sites that suggest a mutation-selection balance in the evolution of codon usage. Cytochrome b data from GenBank show that about half of the species pairs tested have a significant excess of amino acid polymorphism, relative to divergence. The remaining half of species pairs do not depart from neutrality, but generally do show an excess of amino acid polymorphism. Sequences from Drosophila pseudoobscura displaying a signature of an expanding population show a slight, but non-significant, deficiency of amino acid polymorphism suggestive of recently intensified selection on mildly deleterious mutations. Genes whose reading frames lie on the major coding strand of Drosophila mtDNA show a preponderance of T → C substitutions, while genes encoded on the minor strand experience more A → G than T → C substitutions between species at both silent and replacement sites. However, silent mutations at third codon positions are introduced into the population in proportions opposite to those observed as fixed differences between species (e.g., an excess of T → C polymorphisms are found at the ND5 gene on the minor coding strand). The high A+T content of insect mtDNAs imposes strong codon usage bias favoring A-ending and T-ending codons resulting in a distinct mutation-selection balance for genes encoded on opposites strands. Thus, at both replacement and silent sites, mutations that appear to be constrained in terms of divergence between species are in excess within species. The data suggest that mildly deleterious mutations are common in mitochondrial genes. A test of this, and a competing, hypothesis is proposed that requires additional sequence surveys of polymorphism and divergence. An important challenge is to tease apart the impact of mutation and selection on levels of polymorphism versus divergence in a genome that does not generally recombine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akashi, H., 1995. Inferring weak selection from patterns of polymorphism and divergence at ‘silent’ sites in Drosophila DNA. Genetics 139: 1067-1076.

    PubMed  CAS  Google Scholar 

  • Aquadro, C.F., 1992. Why is the genome variable? Insights from Drosophila. Trends in Genetics 8(10): 355-362

    Article  PubMed  CAS  Google Scholar 

  • Asakawa, S., Y. Kumazawa, T. Araki, H. Himeno & K.I. Miura, 1991. Strand-specific nucleotide composition in Echinoderm and vertebrate mitochondrial genomes. J. Mol. Evol. 32: 511-520.

    Article  PubMed  CAS  Google Scholar 

  • Ballard, J.W.O. & M.E. Kreitman, 1994 Unraveling selection in the mitochondrial genome of Drosophila. Genetics 138: 757-772.

    PubMed  CAS  Google Scholar 

  • Barrio, E., A. Latorre & A. Moya, 1994. Phylogeny of the Drosophila obscura species group deduced from mitochondrial DNA sequences. J. Mol. Evol. 39(5): 478-488.

    Article  PubMed  CAS  Google Scholar 

  • Bibb, M.J., R.A. Van Etten, C.T. Wright, M.W. Walberg & D.A. Clayton, 1981. Sequence and gene organization of mouse mitochondrial DNA. Cell 26: 167-180.

    Article  PubMed  CAS  Google Scholar 

  • Birky, C.W. & J.B. Walsh, 1988. Effects of linkage on rates of molecular evolution. Proc. Natl. Acad. Sci. USA 85: 6414-6418.

    Article  PubMed  CAS  Google Scholar 

  • Carson, H.L. & A.R. Templeton, 1984. Genetic revolutions in relation to speciation phenomena: The founding of new populations. Ann. Rev. Ecol. Syst. 15:97-131.

    Article  Google Scholar 

  • Clary, D.O. & D.R. Wolstenholme, 1985. The mitochondrial DNA molecule of Drosophila yakuba: Nucleotide sequence, gene organization and genetic code. J. Mol. Evol. 22: 252-271.

    Article  PubMed  CAS  Google Scholar 

  • Clayton, D.A., 1992. Transcription and replication of animal mitochondrial DNAs. Int. Rev. Cyto. 141: 217-323.

    Article  CAS  Google Scholar 

  • Collins, T.M., P.H. Wimberger & G.J.P. Naylor, 1994. Compositional bias, character-state bias, and character-state reconstruction using parsimony. Syst. Biol. 43: 482-496.

    Article  Google Scholar 

  • Davíd, J. & P. Capy, 1988. Genetic variation of Drosophila melanogaster natural populations. Trends Genet. 4: 106-111.

    Article  PubMed  Google Scholar 

  • Eanes, W.F., M. Kirchner & J. Yoon, 1993. Evidence for adaptive evolution of the G6PD gene in the Drosophila melanogaster and the D. simulans lineages. Proc. Nat. Acad. Sci. USA 90: 7475- 7479.

    Article  PubMed  CAS  Google Scholar 

  • Excoffier, L., 1990. Evolution of human mitochondrial DNA: Evidence for departure from a pure neutral model of populations at equilibrium. J. Mol. Evol. 30: 125-139.

    Article  PubMed  CAS  Google Scholar 

  • Garesse, R., 1988. Drosophila melanogaster mitochondrial DNA: gene organization and evolutionary considerations. Genetics 118: 649-663.

    PubMed  CAS  Google Scholar 

  • Gillespie, J.H., 1994a. Alternatives to the neutral theory, pp. 117 in Non-neutral evolution. edited by B. Golding. Chapman and Hall.

  • Gillespie, J.H., 1994b. Substitutional processes in molecular evolution. III. Deleterious alleles. Genetics 138: 943-952.

    PubMed  CAS  Google Scholar 

  • Gillespie, J.H., 1995. On Ohta's hypothesis: Most amino acid substitutions are deleterious. J. Mol. Evol. 40: 64-69.

    Article  CAS  Google Scholar 

  • Hale, L.R. & R.S. Singh, 1991. A comprehensive study of genic variation in natural populations of Drosophila melanogaster. IV. Mitochondrial DNA variation and the role of history vs. selection in the genetic structure of geographic populations. Genetics 129: 103-117.

    PubMed  CAS  Google Scholar 

  • Hudson, R.R., M. Kreitman & M. Aguadé, 1987. A test of neutral molecular evolution based on nucleotide data. Genetics 116: 153- 159.

    PubMed  CAS  Google Scholar 

  • Jermiin, L.S., D. Graur & R.H. Crozier, 1995. Evidence from analyses of intergenic regions for strand-specific directional mutation pressure in metazoan mitochondrial DNA. Mol. Biol. Evol. 12: 558-563.

    CAS  Google Scholar 

  • Kaneko, M., Y. Satta, E.T. Matsuura & S. Chigusa, 1993. Evolution of the mitochondrial ATPase 6 gene in Drosophila: unusually high level of polymorphism in D. melanogaster. Genet. Res., Camb. 61: 195-204.

    CAS  Google Scholar 

  • Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Lobry, J.R., 1996. Asymmetric substitution patterns in the two strands of bacteria. Mol. Biol. Evol. 12: 660-665.

    Google Scholar 

  • Martin, A., 1995. Metabolic rate and directional nucleotide substitution in animal mitochondrial DNA. Mol. Biol. Evol. 12: 1124- 1131.

    PubMed  CAS  Google Scholar 

  • Martin, A.P. & S.R. Palumbi, 1993. Body size, metabolic rate, generation time and the molecular clock. Proc. Natl. Acad. Sci. USA 90: 4087-4091.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, J.H. & M. Kreitman, 1991. Adaptive protein evolution at the Adh locus in Drosophila Nature 351: 652-654.

    Article  PubMed  CAS  Google Scholar 

  • Nachman, M.W., 1998. Deleterious mutations in animal mitochondrial DNA. Genetica 102/103: 61-69.

    Article  PubMed  Google Scholar 

  • Nachman, M.W., S.N. Boyer & C.F. Aquadro, 1994. Non-neutral evolution at the mitochondrial ND3 gene in mice. Proc. Natl. Acad. Sci. USA 91: 6364-6368.

    Article  PubMed  CAS  Google Scholar 

  • Nachman, M.W., W.M. Brown, M. Stoneking & C.F. Aquadro, 1996. Non-neutral mitochondrial DNA variation in humans and chimpanzees. Genetics 142: 953-963.

    PubMed  CAS  Google Scholar 

  • Ohta, T., 1973. Slightly deleterious mutant substitution in evolution. Nature 246: 96-98.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, T. 1992. The nearly neutral theory of molecular evolution. Annual Review of Ecology and Systematics. 23: 263-286.

    Article  Google Scholar 

  • Ohta, T. 1995. Synonymous and nonsynonymous substitutions in mammalian genes and the nearly neutral theory. J. Mol. Evol. 40: 56-63.

    Article  PubMed  CAS  Google Scholar 

  • Otto, S.P. & M.C. Whitlock, 1997. The probability of fixation in populations of changing size. Genetics 146: 723-733.

    PubMed  CAS  Google Scholar 

  • Perna, N. & T.D. Kocher, 1995a. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41: 353-358.

    Article  PubMed  CAS  Google Scholar 

  • Perna, N. & T.D. Kocher, 1995b. Unequal base frequencies and the estimation of substitution rates. Mol. Biol. Evol. 12: 359-361.

    CAS  Google Scholar 

  • Rand, D.M., 1994. Thermal habit, metabolic rate and the evolution of mitochondrial DNA. Trends. Ecol. Evol. 9: 125-131.

    Article  Google Scholar 

  • Rand, D.M., M. Dorfsman & L.M. Kann, 1994. Neutral and non-neutral evolution of Drosophila mitochondrial DNA. Genetics 138: 741-756.

    PubMed  CAS  Google Scholar 

  • Rand, D.M. & L.M. Kann, 1996. Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes in Drosophila mice and humans. Mol. Biol. Evol. 13: 735-748.

    PubMed  CAS  Google Scholar 

  • Rogers, A.R. & H. Harpending, 1992. Population growth makes waves in the distribution of pairwise differences. Mol. Biol. Evol. 9: 552-569.

    PubMed  CAS  Google Scholar 

  • Sawyer, S.A. & D.L. Hartl, 1992. Population genetics of polymorphism and divergence. Genetics 132: 1161-1176.

    PubMed  CAS  Google Scholar 

  • Schaeffer, S.W. & E.L. Miller, 1992. Molecular population genetics of an electrophoretically monomorphic protein in the alcohol dehydrogenase region ofDrosophila melanogaster. Genetics 132: 163-178.

    PubMed  CAS  Google Scholar 

  • Slatkin, M., 1987. Gene flow and the geographic structure of populations. Science 236: 787-792.

    PubMed  CAS  Google Scholar 

  • Slatkin, M. & R.R. Hudson, 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129: 555-562.

    PubMed  CAS  Google Scholar 

  • Tachida, H., 1991. A study on a nearly neutral mutation model in finite populations. Genetics 128: 183-192.

    PubMed  CAS  Google Scholar 

  • Tamura, K. & M. Nei, 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512-526.

    PubMed  CAS  Google Scholar 

  • Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595.

    PubMed  CAS  Google Scholar 

  • Templeton, A.R., 1996. Contingency tests of neutrality using intra/interspecific gene trees: The rejection of neutrality for the evolution of the mitochondrial cytochrome oxidase II gene in hominoid primates. Genetics 144: 1263-1270.

    PubMed  CAS  Google Scholar 

  • Wang, R.L. & J. Hey, 1996. The speciation history of Drosophila pseudoobscura and close relatives: inferences from DNA sequence variation at the period locus. Genetics 144: 1113-1126.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rand, D.M., Kann, L.M. Mutation and selection at silent and replacement sites in the evolution of animal mitochondrial DNA. Genetica 102, 393–407 (1998). https://doi.org/10.1023/A:1017006118852

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017006118852

Navigation