Skip to main content
Log in

Laboratory experiments on trophic relationships and remote detection between two ciliates and Cyclops vicinus vicinus

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Laboratory experiments were performed to study the feeding behavior of Cyclops vicinus (Copepoda, Cyclopoida), fed two ciliates (Cyclidium sp. and Tetrahymena corlissi) chosen for their different size and swimming behavior. All grazing experiments were conducted with predators starved for 24 hr. Cyclidium sp. was fixed with Glutaraldehyde and Tetrahymena corlissi with mercuric chlorid in order to reduce counting errors. The Incipient Limit Level (ILL) for Tetrahymena corlissi was reached at the initial concentration of 76000 cell l-1 and corresponded to an ingestion rate of 340 cell ind-1 h-1; that for Cyclidium sp. was reached at 12 000 cell l-1 with an ingestion rate of 54 cell ind-1 h-1. The detection experiments were based on visual observations of Cyclops movements in experimental chambers with prey concentrations corresponding to the ILL. Both ciliates were used to evaluate the mechanisms involved in the detection of prey by Cyclops vicinus. Direct observations showed that Tetrahymena corlissi had a significant attractive effect on C. vicinus. Such behavior suggests that mechanoreception may be the overriding mechanism of remote detection. In contrast, C. vicinus does not react to the presence of Cyclidium sp. (at low concentration). These small prey, which swim actively in comparison with T. corlissi, are preyed on haphazardly. Ciliates can be a significant part of the diet of Cyclops vicinus, confirming their importance as mediators for energy transfer from the microbial loop to higher trophic levels; the mechanism of detection of such motile prey by Cyclops vicinus varies with prey swimming behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R., 1987. Viability of phytoplankton in fecal pellets of two cyclopoid copepods. Arch. Hydrobiol. 110: 321–330.

    Google Scholar 

  • Adrian, R., 1991 Filtering and feeding rates of cyclopoid copepods feeding on phytoplankton. Hydrobiologia 210: 217–223.

    Article  Google Scholar 

  • Archbold, H. G. & J. Berger, 1985. A qualitative assessment of some metazoan predators of Halteria grandinella a common freshwater ciliate. Hydrobiologia 124: 97–102.

    Article  Google Scholar 

  • Atema, J., 1987. Chemoreception in the sea: adaptations of chemoreceptors and behavior to aquatic stimulus conditions. In Atema, J., R. R. Ray, A. N. Popper & W. N. Tavolga (eds), Sensor Biology of Aquatic Animals. Springer, New York: 29–56.

    Google Scholar 

  • Atkinson, A., 1996. Subantarctic copepods in an oceanic, low chlorophyll environment: ciliate predation, food selectivity and impact on prey population. Mar. Ecol. Prog. Ser. 130: 85–96.

    Google Scholar 

  • Bark, A. W., 1985. Studies on ciliated protozoa in eutrophic lakes: 1. Seasonal distribution in relation to thermal stratification and hypolimnic anoxia. Hydrobiologia 124: 167–176.

    Article  Google Scholar 

  • Beaver, J. R. & T. L. Crisman, 1982. The trophic response of ciliated protozoans in freshwater lakes. Limnol. Oceanogr. 27: 246–253.

    Google Scholar 

  • Beaver, J. R. & T. L. Crisman, 1989. The role of ciliated protozoa in pelagic freshwater ecosystems. Microb. Ecol. 17: 111–136.

    Article  Google Scholar 

  • Beaver, J. R., T. L. Crisman & J. R. W. Bienert, 1988. Distribution of planktonic ciliates in highly coloured subtropical lakes: comparison with clearwater ciliate communities and the contribution of mixotrophic taxa to total autotrophic biomass. Freshwat. Biol. 20: 51–60.

    Article  Google Scholar 

  • Bereczky, M. C., 1985. Fixationsund F¨arbungsschnellverfahren bei quantitativen ökologischen Untersuchungen von Protozoen in Binnengewässern. Arch. Protistenkd. 129: 187–190.

    Google Scholar 

  • Berk, S. G., D. R. Brownlee, D. L. Heinle, H. J. King & R. R. Colwell, 1977. Ciliates as food source for marine planktonic copepods. Microbiol. Ecol. 4: 27–40.

    Article  Google Scholar 

  • Berninger, U. G., S. A. Wickham & B. J. Finlay, 1993. Trophic coupling within the microbial food web: a study with fine temporal resolution in a eutrophic freshwater ecosystem. Freshwat. Biol. 30: 419–432.

    Article  Google Scholar 

  • Bienert, R. W., J. R. Beaver & T. L. Crisman, 1991. The contribution of zooplankton biomass in an acidic, subtropical lake. J. Protozool. 38: 352–354.

    Google Scholar 

  • Brandl, Z. & C.H. Fernando, 1975. Food consumption and utilization in two freshwater cyclopoid copepods (Mesocyclops edax and Cyclops vicinus). Int. Rev. Ges. Hydrobiol. 60: 471–494.

    Google Scholar 

  • Cowles, T. J., R. J. Olson & S. W. Chishlom, 1988. Food selection by copepods: discrimination on the basis of food quality. Mar. Biol. 100: 41–49.

    Article  Google Scholar 

  • De Mott, W. R., 1988. Discrimination between algae and detritus by freshwater and marine zooplankton. Bull. Mar. Sci. 43: 486–499.

    Google Scholar 

  • De Mott, W. R., 1989. Optimal foraging theory as predictor of chemically mediated food selection by suspension - feeding copepods. Limnol. Oceanogr. 34: 140–154.

    Google Scholar 

  • De Mott, W. R., 1990. Retention efficiency, perceptual bias, and active choice as mechanism of food selection by suspensionfeeding zooplankton. In Hughes, N.N. (ed.), Behavioral Mechanism of Food Selection. NATO Series G: Ecological Sciences Springer, Heidelberg, New York: 569–594.

    Google Scholar 

  • De Mott, W. R. & F. Moxter, 1991. Foraging on cyanobacteria by copepods: responses to chemical defenses and resource abundance. Ecology 72: 1820–1834.

    Article  Google Scholar 

  • De Mott, W. R. & M. D. Watson, 1991. Remote detection of algae by copepods: responses to algal size, odors and motility. J. Plankton Res. 13: 1203–1222.

    Google Scholar 

  • Finlay, B. J., 1977. The dependence of reproductive rate on cell size and temperature in freshwater ciliated protozoa. Oecologia 30: 75–81.

    Article  Google Scholar 

  • Finlay, B. J., K. J. Clarke, A. J. Cowling, R. A. Hindle, A. Rogerson & U. G. Berninger, 1988. On the abundance and distribution of protozoa and their food in a productive freshwater pond. Eur. J. Protistol. 23: 205–217.

    Google Scholar 

  • Folt, C., P. C. Schulze & K. Baumgartner, 1993. Characterising a zooplankton neighbourhood: small scale patterns of association and abundance. Freshwat. Biol. 30: 289–300.

    Article  Google Scholar 

  • Friedman, M. M., 1980. Comparative morphology and functional significance of copepod receptors and oral structures. In Kerfoot, W. C. (ed.), Evolution and Ecology of ZooplanktonCommunities. The University Press of New England, Hanover (N.H.); Lond.: 185–197.

    Google Scholar 

  • Fulton, R. S. & H.W. Paerl, 1987. Toxic and inhibitory effects of the blue algae Microcystis aeruginosa on herbivorous zooplankton. J. Plankton Res. 9: 837–855.

    Google Scholar 

  • Gates, M. A., 1984. Quantitative importance in the planktonic biomass of lake ecosystems. Hydrobiologia 108: 233–238.

    Google Scholar 

  • Gifford, D. J., 1991. The protozoanmetazoan trophic link in pelagic ecosystems. J. Protozool. 38: 81–86.

    Google Scholar 

  • Gilbert, J. J. & K. G. Bogdan, 1981. Selectivity of Polyarthra and Keratella for flagellate and aflagellate cells. Verh. int. Ver. Theor. Angew. Limnol. 21: 1515–1521.

    Google Scholar 

  • Gliwicz, Z. M. & G. Umana, 1994. Cladoceran body size and vulnerability to copepod predation. Limnol. Oceanogr. 29: 419–424.

    Article  Google Scholar 

  • Hartmann, H. J., H. Taleb, L. Aleya & N. Lair, 1993. Predation on ciliates by the suspensionfeeding calanoid copepod Acanthodiaptomus denticornis. Can. J. Fish. aquat. Sci. 50: 1382–1393.

    Article  Google Scholar 

  • Hasset, R. P. & M. R. Landry, 1988. Shortterm changes in feeding and digestion by the copepod Calanus pacificus. Mar. Biol. 99: 63–74.

    Article  Google Scholar 

  • Holling, C. S., 1959. The components of predation as revealed by a study of smallmammal predation of the European pine sawfly. Can. J. Ent. 91: 293–320.

    Google Scholar 

  • Hunt, G.H. & S. M. Chein, 1983. Seasonal distribution, composition and abundance of the planktonic ciliata and testacea of Cayuga lake. Hydrobiologia 98: 257–266.

    Google Scholar 

  • Hutchinson, G. E., 1975. A treatise on limnology, 3. Wiley & Sons, New York, 660 pp.

    Google Scholar 

  • Jonsson, P. R. & P. Tiselius, 1990. Feeding behavior, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates. Mar. Ecol. Prog. Ser. 60: 35–44.

    Google Scholar 

  • Kerfoot, W. C., 1978. Combat between predatory copepods and their prey: Cyclops, Epischura, and Bosmina. Limnol. Oceanogr. 23: 1089–102.

    Google Scholar 

  • Lair, N., 1992. Daytime grazing and assimilation rates of planktonic copepods Acanthodiaptomus denticornis and Cyclops vicinus vicinus.Comparison of spatial and resources utilisation by rotifers and cladocerans communities in an eutrophic lake. Hydrobiologia 231: 107–117.

    Article  Google Scholar 

  • Lloyd, M., 1967. 'Meancrowding'. J. Anim. Ecol. 36: 1–30.

    Article  Google Scholar 

  • Marin, V., M. E. Huntley & B. Frost, 1986. Measuring feeding rates of pelagic herbivores: analysis of experimental design and methods. Mar. Biol. 93: 49–58.

    Article  Google Scholar 

  • Pace, M. L., 1982. Planktonic ciliates: their distribution, abundance, and relationship to microbial resources in a monomictic lake. Can. J. Fish. aquat. Sci. 39: 1106–1116.

    Article  Google Scholar 

  • Pace, M. L., 1986. An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnol.Oceanogr. 31: 45–55.

    Google Scholar 

  • Pace M. L. & J. D. Orcutt, 1981. The relative importance of protozoans, rotifers and crustaceans in a freshwater zooplankton community. Limnol. Oceanogr. 26: 822–830.

    Google Scholar 

  • Paffenhöfer, G. A. & K. B. Van Sant, 1986. The feeding response of a marine planktonic copepod to quantity and quality of particles. Mar. Ecol. Prog. Ser. 27: 55–65.

    Google Scholar 

  • Price, H. J., 1988. Feeding mechanism in marine and freshwater zooplankton. Bull. mar. Sci. 43: 327–343.

    Google Scholar 

  • Price, H. J., G. A. Paffenhöfer & J. R. Strickler, 1983. Modes of cell capture in calanoid copepods. Limnol. Oceanogr. 28: 116–123.

    Google Scholar 

  • Runge, J. A., 1980. Effect of hunger and season on the feeding behavior of Calanus pacificus. Limnol. Oceanogr. 25: 134–145.

    Google Scholar 

  • Sanders, R. W. & S. A. Wickham, 1993. Planktonic protozoa and metazoa: predation, food quality and population control. Mar. Microb. Food Webs 7: 197–223.

    Google Scholar 

  • Santer, B., 1993. Potential importance of algae in the diet of adult Cyclops vicinus. Freshwat. Biol. 30: 269–278.

    Article  Google Scholar 

  • Santer, B., 1994. Influence of food type and concentration on the development of Eudiaptomus gracilis and implications for interactions between calanoid and cyclopoid copepods. Arch. Hydrobiol. 131: 141–159.

    Google Scholar 

  • Santer, B. & F. van den Bosch, 1994. Herbivorous nutrition of Cyclops vicinus: the effect of a pure algal diet on feeding, development, reproduction and life cycle. J. Plankton Res. 16: 171–195.

    Google Scholar 

  • Sherr, E. B., B. F. Sherr & G. A. Paffenhöfer, 1986. Phagotrophic protozoa as food for metazoans: a missing trophic link in marine pelagic food webs? Mar. Microb. Food Webs 1: 61–80.

    Google Scholar 

  • Sherr, E. B., B. F. Sherr, T. Berman & O. Haddas, 1991. High abundance of picoplanktoningesting ciliates during late fall in lake Kinneret, Israel. J. Plankton Res. 13: 789–799.

    Google Scholar 

  • SimeNgando, T. & H. J. Hartmann, 1991. Shortterm variations of the abundance and biomass of planktonic ciliates in an eutrophic lake. Eur. J. Protistol. 27: 249–263.

    Google Scholar 

  • Stemberger, R. S., 1985. Prey selection by the copepod Diacyclops thomasi. Oecologia 65: 492–497.

    Article  Google Scholar 

  • Stœcker, D. K. & J. M. Capuzzo, 1990. Predation on protozoa: its importance to zooplankton. J. Plankton Res. 12: 891–908.

    Google Scholar 

  • Stœcker, D. K. & D. A. Egloff, 1987. Predation by Acartia tonsa Dana on planktonic ciliates and rotifers. J. exp. mar. Biol. Ecol. 110: 53–68.

    Article  Google Scholar 

  • Strickler, J. R., 1985. Feeding currents in calanoid copepods: two new hypotheses. In Laverak, M. S. (ed.), Physiological Adaptations of Marine Animals. Soc. exp. Biol. 459–485.

  • Uchima, M., 1988. Gut content analysis of neritic copepods Acartia omorii and Oithona davisae by a new method. Mar. Ecol. Prog. Ser. 48: 93–97.

    Google Scholar 

  • Uchima, M. & R. Hirano, 1986. Food ofOithona davisae (Copepoda: Cyclopoida) and the effect of food concentration at first feeding on the larval growth. Bull. Plankton Soc. Jap. 33: 21–28.

    Google Scholar 

  • Vanderploeg, H. A. & G. A. Paffenhöfer, 1985. Modes of algal capture by the freshwater copepod Diaptomus sicilis and their relation to foodsize selection. Limnol. Oceanogr. 30: 871–885.

    Google Scholar 

  • Vanderploeg, H. A., G. A. Paffenhöfer & J. R. Liebig, 1988. Diaptomus versus net phytoplankton: effects of algal size andmorphology on selectivity of a behaviorally flexible, omnivorous copepod. Bull. Mar. Sci. 43: 377–394.

    Google Scholar 

  • Vijverberg, J., 1989. Culture techniques for studies on the growth, development and reproduction of copepods and cladocerans under laboratory and in situ conditions: a review. Freshwat. Biol. 21: 317–373.

    Article  Google Scholar 

  • Wickham, S. A, 1995. Cyclops predation on ciliates: speciesspecific differences and functional responses. J. Plankton Res. 17: 1633–1646.

    Google Scholar 

  • Williamson, C. E., 1980. The predatory behavior of Mesocyclops edax: predator preferences, prey defenses, and starvationinduced changes. Limnol. Oceanogr. 25: 903–909.

    Article  Google Scholar 

  • Williamson, C. E., 1987. Predatorprey interactions between omnivorous diaptomid copepods and rotifers: the role of prey morphology and behavior. Limnol. Oceanogr. 32: 167–177.

    Google Scholar 

  • Williamson, C. E., 1991. Copepoda: Ecology and classification of North American Freshwater Invertebrates 21: 787–822.

    Google Scholar 

  • Williamson, C. E. & M. E. Stœckel, 1990. Estimating predation risk in zooplankton communities: the importance of vertical overlap. Hydrobiologia 198: 125–131.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabette, C., Thouvenot, A. & Lair, N. Laboratory experiments on trophic relationships and remote detection between two ciliates and Cyclops vicinus vicinus. Hydrobiologia 373, 157–167 (1998). https://doi.org/10.1023/A:1017001725062

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017001725062

Navigation