Skip to main content
Log in

Estimating predation risk in zooplankton communities: the importance of vertical overlap

  • Copepods
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In order to estimate predation risk in nature, two basic components of predation need to be quantified: prey vulnerability, and density risk. Prey vulnerability can be estimated from clearance rates obtained from enclosure experiments with and without predators. Density risk is a function of predator density, and the spatial and temporal overlap of the predator and prey populations. In the current study we examine the importance of the vertical component of overlap in making accurate estimates of predation risk from the invertebrate predator Mesocyclops edax on rotifer versus crustacean prey. The results indicate that assumptions of uniform predator and prey densities cause a significant underestimation of predation risk for many crustacean prey due to the coincident vertical migration of these prey with the predator. The assumption of uniformity is more reasonable for estimating predation risk for most rotifer prey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, J. D., 1976. Life history patterns in zooplankton. Am. Nat. 110: 165–180.

    Google Scholar 

  • Bowers, J. A. & H. A. Vanderploeg, 1982. In situ predatory behavior of Mysis relicta in Lake Michigan. Hydrobiologia 93: 121–131.

    Google Scholar 

  • Brandl, Z. & C. H. Fernando, 1978. Prey selection by the cyclopoid copepods Mesocyclops edax and Cyclops vicinus. Verh. int. Ver. Limnol. 20: 2505–2510.

    Google Scholar 

  • Brandl, Z. & C. H. Fernando, 1979. The impact of predation by the copepod Mesocyclops edax (Forbes) on zooplankton in three lakes in Ontario, Canada. Can. J. Zool. 57: 940–942.

    Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Google Scholar 

  • Confer, J. L., 1971. Intrazooplankton predation by Mesocyclops edax at natural prey densities. Limnol. Oceanogr. 16: 663–666.

    Google Scholar 

  • Dodson, S. I., 1974. Zooplankton competition and predation: an experimental test of the size-efficiency hypothesis. Ecology 55: 605–613.

    Google Scholar 

  • Dodson, S. I., 1975. Predation rates of zooplankton in arctic ponds. Limnol. Oceanogr. 20: 426–433.

    Google Scholar 

  • Drenner, R. W. & S. R. McComas, 1980. The roles of zooplankter escape ability and fish size selectivity in the selective feeding and impact of planktivorous fish. In: W. C. Kerfoot (ed), Evolution and Ecology of Zooplankton Communities. University Press of New England, (NH), Lond.: 587–593.

    Google Scholar 

  • Drenner, R. W., F. deNoyelles Jr. & D. Kettle, 1982. Selective impact of filter-feeding gizzard shad on zooplankton community structure. Limnol. Oceanogr. 27: 965–968.

    Google Scholar 

  • Fedorenko, A. Y., 1975. Instar and species-specific diets in two species of Chaoborus. Limnol. Oceanogr. 20: 238–249.

    Google Scholar 

  • Folt, C. L., J. T. Rybock & C. R. Goldman, 1982. The effect of prey composition and abundance on the predation rate and selectivity of Mysis relicta. Hydrobiologia 93: 133–143.

    Google Scholar 

  • Gannon, J. E. & S. A. Gannon, 1975. Observations on the narcotization of crustacean zooplankton. Crustaceana 28: 220–224.

    Google Scholar 

  • Gauld, D. T., 1951. The grazing rate of planktonic copepods. J. mar. biol. Ass. UK 29: 695–706.

    Google Scholar 

  • Hutchinson, G. E.,1967. A Treatise on Limnology. Volume 2. John Wiley & Sons, Inc., New York. 1115 pp.

    Google Scholar 

  • Landry, M. R. & R. P. Hassett, 1982. Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 67: 283–288.

    Google Scholar 

  • Lehman, J. T., 1980. Release and cycling of nutrients between planktonic algae and herbivores. Limnol. Oceanogr. 25: 620–632.

    Google Scholar 

  • Li, J. L. & H. W. Li, 1979. Species-specific factors affecting predator-prey interactions of the copepod Acanthocyclops vernalis with its natural prey. Limnol. Oceanogr. 24: 613–626.

    Google Scholar 

  • Likens, G. E. & J. J. Gilbert, 1970. Notes on quantitative sampling of natural populations of planktonic rotifers. Limnol. Oceanogr. 15: 816–820.

    Google Scholar 

  • Melville, G. E. & E. J. Maly, 1981. Vertical distributions and zooplankton predation in a small temperate pond. Can. J. Zool. 59: 1720–1725.

    Google Scholar 

  • Miracle, M. R., 1977. Migration, patchiness and distribution in time and space of planktonic rotifers.Arch. Hydrobiol. Beih. 8: 19–37.

    Google Scholar 

  • O'Brien, W. J., N. A. Slade & G. L. Vinyard, 1976. Apparent size as the determinant of prey selection by bluegill sunfish (Lepomis macrochirus). Ecology 57: 1304–1310.

    Google Scholar 

  • O'Brien, W. J., 1979. The predator-prey interaction of planktivorous fish and zooplankton. Am. Sci. 67: 572–581.

    Google Scholar 

  • Ohman, M. D., 1988. Behavioral responses of zooplankton to predation. Bull. mar. Sci. 43: 530–550.

    Google Scholar 

  • Pivoda, B., 1977. Migration of planktonic rotifers in Lunzer Obersee (Austria). Arch. Hydrobiol. Beih. 8: 50–52.

    Google Scholar 

  • Prepas, E., 1978. Sugar-frosted Daphnia: An improved fixative technique for Cladocera. Limnol. Oceanogr. 23: 557–559.

    Google Scholar 

  • Roche, K. F., 1987. Post-encounter vulnerability of some rotifer prey types to predation by the copepod Acanthocyclops robustus. Hydrobiologia 147: 229–233.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1981. Biometry 2nd Edition. W. H. Freeman and Co. San Francisco, CA. 859 pp.

    Google Scholar 

  • Threlkeld, S. T. & J. M. Dirnberger, 1986. Benthic distributions of planktonic copepods, especially Mesocyclops edax. Syllogeus 58: 481–486.

    Google Scholar 

  • Williamson, C. E., 1983. Invertebrate predation on planktonic rotifers. Hydrobiologia 104: 385–396.

    Google Scholar 

  • Williamson, C. E., 1984. Laboratory and field experiments on the feeding ecology of the cyclopoid copepod, Mesocyclops edax. Freshwat. Biol. 14: 575–585.

    Google Scholar 

  • Williamson, C. E., 1986. The swimming and feeding behavior of Mesocyclops. Hydrobiologia 134: 11–19.

    Google Scholar 

  • Williamson, C. E., 1987. Predator-prey interactions between omnivorous diaptomid copepods and rotifers: The role of prey morphology and behavior. Limnol. Oceanogr. 32: 167–177.

    Google Scholar 

  • Williamson, C. E. & R. E. Magnien, 1982. Diel vertical migration in Mesocyclops edax: Implications for predation rate estimates. J. Plankton Res. 4: 329–339.

    Google Scholar 

  • Williamson, C. E., M. E. Stoeckel & L. J. Schoeneck, 1989. Predation risk and the structure of freshwater zooplankton communities. Oecologia. 79: 76–82.

    Google Scholar 

  • Woodmansee, R. A. & B. J. Grantham, 1961. Diel vertical migrations of two zooplankters (Mesocyclops and Chaoborus) in a Mississippi lake. Ecology 42: 619–628.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, C.E., Stoeckel, M.E. Estimating predation risk in zooplankton communities: the importance of vertical overlap. Hydrobiologia 198, 125–131 (1990). https://doi.org/10.1007/BF00048629

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048629

Key words

Navigation