Skip to main content
Log in

Electroreduction of Ammonia and Hydroxyammonia Complexes of Divalent Metals: Effect of the Ligand Concentration and the EDL Structure

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Kinetics and mechanism of electroreduction of complexes Pd(NH3)4 2+ on a dropping mercury electrode (DME) and a Pd electrode, as well as ammonia complexes of Co(II), Ni(II), and Zn(II) and hydroxyammonia complexes of Zn(II) on DME at different concentrations of ammonia and supporting electrolytes and different pH values are discussed. The half-wave potentials of electroreduction of ammonia complexes of Pd(II) and Ni(II) on DME in the absence of a polarographic maximum obey an equation that takes into account the effect the EDL structure has on the rate of a slow outer-sphere electrochemical stage. As opposed to Pd(II) complexes, the reduction of the other complexes involves preceding reversible chemical stages, which yield diammonia complexes undergoing a direct reduction on DME. The reasons for the emergence of a polarographic maximum upon an increase in the concentration of reduced complexes and the time of recording an instant current are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bjerrum, J., Metal Ammine Formation in Aqueous Solution, Kobenhavn: Munksgaard, 1957.

    Google Scholar 

  2. Sillen, L.G. and Martell, A.E., Spec. Publ.-Chem. Soc., 1964, no. 17; 1971, no. 25.

  3. Högfeldt, E., Stability Constants of Metal-Ion Complexes, part A: Inorganic Ligands, New York: Pergamon, 1982.

    Google Scholar 

  4. Bode, H., Z. Anorg. Allg. Chem., 1962, vol. 317, p. 3.

    Google Scholar 

  5. Gerisher, H., Z. Phys. Chem. (Leipzig), 1953, vol. 202, p. 302.

    Google Scholar 

  6. Matsuda, H. and Ayabe, Y., Bull. Chem. Soc. Jpn., 1956, vol. 29, p. 134.

    Google Scholar 

  7. Stromberg, A.G., Zh. Fiz. Khim., 1957, vol. 31, p. 1704.

    Google Scholar 

  8. Matsuda, H. and Ayabe, Y., Z. Elektrochem., 1959, vol. 63, p. 1164.

    Google Scholar 

  9. Molodov, A.I. and Losev, V.V., Elektrokhimiya, 1965, vol. 1, p. 149.

    Google Scholar 

  10. Popova, L.N. and Stromberg, A.G., Elektrokhimiya, 1968, vol. 4, p. 1147.

    Google Scholar 

  11. Eriksrud, E., J. Electroanal. Chem., 1975, vol. 60, p. 41.

    Google Scholar 

  12. Eriksrud, E., J. Electroanal. Chem., 1976, vol. 67, p. 69.

    Google Scholar 

  13. Crow, D.R. and Rose, M.E., Electrochim. Acta, 1979, vol. 24, p. 41.

    Google Scholar 

  14. Urbanska, J., Electrochim. Acta, 1985, vol. 30, p. 261.

    Google Scholar 

  15. Kravtsov, V.I., Ravnovesie i kinetika elektrodnykh reaktsii kompleksov metallov (The Equilibrium and Kinetics of Electrode Reactions Involving Metal Complexes), Leningrad: Khimiya, 1985, p. 208.

    Google Scholar 

  16. Tsventarnyi, E.G., Kravtsov, V.I., Russkikh, Ya.V., and Burogaa, I., Elektrokhimiya, 1997, vol. 33, p. 373.

    Google Scholar 

  17. Astakhova, R.K., Balushkina, S.R., Kravtsov, V.I., and Peganova, N.V., Elektrokhimiya, 1999, vol. 35, p. 1395.

    Google Scholar 

  18. Astakhova, R.K., Kravtsov, V.I., and Peganova, N.V., Elektrokhimiya, 2001, vol. 37, p. 186.

    Google Scholar 

  19. Kravtsov, V.I., Tsventarnyi, E.G., Kurtova, O.Yu., and Nosov, S.N., Elektrokhimiya, 2001, vol. 37, p. 658.

    Google Scholar 

  20. Mairanovskii, S.G., Elektrokhimiya, 1967, vol. 3, p. 1434.

    Google Scholar 

  21. Koryta, J., Collect. Czech. Chem. Commun., 1953, vol. 18, p. 206.

    Google Scholar 

  22. Emsley, J., The Elements, Oxford: Clarendon, 1991.

  23. Brønnum, B., Johansen, H.S., and Skibsted, L.H., Acta Chem. Scand., 1989, vol. 43, p. 975.

    Google Scholar 

  24. Willis, J.B., J. Am. Chem. Soc., 1945, vol. 67, p. 547.

    Google Scholar 

  25. Parry, E.P. and Oldham, K.B., Anal. Chem., 1968, vol. 40, p. 1031.

    Google Scholar 

  26. Kravtsov, V.I., Russkikh, Ya.V., and Tsventarnyi, E.G., Elektrokhimiya, 1999, vol. 35, p. 128.

    Google Scholar 

  27. Heyrovský, J. and Kuta, J., Principles of Polarography, New York: Academic, 1966.

    Google Scholar 

  28. Russell, C.D., J. Electroanal. Chem., 1963, vol. 6, p. 490.

    Google Scholar 

  29. Tsventarnyi, E.G. and Kravtsov, V.I., Elektrokhimiya, 1999, vol. 35, p. 603.

    Google Scholar 

  30. Meites, L. and Israel, Y., J. Am. Chem. Soc., 1961, vol. 83, p. 4903.

    Google Scholar 

  31. Davison, W. and Harrison, J.A., J. Electroanal. Chem., 1972, vol. 36, p. 399.

    Google Scholar 

  32. Vlček, A.A., Z. Elektrochem., 1957, vol. 61, p. 1014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kravtsov, V.I., Astakhova, R.K., Tsventarnyi, E.G. et al. Electroreduction of Ammonia and Hydroxyammonia Complexes of Divalent Metals: Effect of the Ligand Concentration and the EDL Structure. Russian Journal of Electrochemistry 38, 157–164 (2002). https://doi.org/10.1023/A:1016816231285

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016816231285

Keywords

Navigation