Skip to main content
Log in

Methanol: A “Smart” Chemical Probe Molecule

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A novel chemisorption method was employed for the dissociative adsorption of methanol to surface methoxy intermediates in order to quantitatively determine the number of surface active sites on one-component metal oxide catalysts (MgO, CaO, SrO, BaO, Y2O3, La2O3, CeO2, TiO2, ZrO2, HfO2, V2O5, Nb2O5, Ta2O5, Cr2O3, MoO3, WO3, Mn2O3, Fe2O3, Co3O4, Rh2O3, NiO, PdO, PtO, CuO, Ag2O, Au2O3, ZnO, Al2O3, Ga2O3, In2O3, SiO2, GeO2, SnO2, P2O5, Sb2O3, Bi2O3, SeO2 and TeO2). The number of surface active sites for methanol dissociative adsorption corresponds to ∼3 μmol/m2 on average for many of the metal oxide catalysts. Furthermore, the methanol oxidation product distribution at low conversions reflects the nature of the surface active sites on metal oxides since redox sites yield H2CO, acidic sites yield CH3OCH3 and basic sites yield CO2. The distribution of the different types of surface active sites was found to vary widely for the different metal oxide catalysts. In addition, the commonality of the surface methoxy intermediate during dissociative chemisorption of methanol and methanol oxidation on oxide catalysts also allows for the quantitative determination of the turnover frequency (TOF) values. The TOF values for the various metal oxide catalysts were found to vary over seven orders of magnitude (10−3 to 104 s−1). An inverse relationship (for metal oxide catalysts displaying high (>85%) selectivity to either redox or acidic products) was found between the methanol oxidation TOF values and the decomposition temperatures of the surface M–OCH3 intermediates reflecting that the decomposition of the surface M–OCH3 species is the rate-determining step during methanol oxidation over the metal oxide catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.M. Thomas andW.J. Thomas, Principles and Practice of Heterogeneous Catalysis ( VCH, New York, 1997 ).

    Google Scholar 

  • A.N. Desikan,L. Huang andS.T. Oyama, J. Phys. Chem. 95 (1991) 10050.

    Google Scholar 

  • K.V.R. Chary,V. Vijayakumar andP.K. Rao, Langmuir 6 (1990) 1549.

    Google Scholar 

  • B.M. Reddy,K.V.R. Chary,B. Rama Rao,V.S. Subrahmanyam,C.S. Sunandana andN.K. Nag, Polyhedron 5 (1986) 191.

    Google Scholar 

  • F. Majunke,M. Baerns,A. Baiker andR.A. Koeppel, Catal. Today 20 (1994) 53.

    Google Scholar 

  • P.K. Rao andK. Narasimha, ACS Symp. Ser. 523 (1993) 231.

    Google Scholar 

  • K.V.R. Chary, J. Chem. Soc. Chem. Commun. (1989) 104.

  • B.M. Reddy,B. Manohar andE.P. Reddy, Langmuir 9 (1993) 1781.

    Google Scholar 

  • K.V.R. Chary,B.R. Rao andV.S. Subrahmanyam, Appl. Catal. A 74 (1991) 1.

    Google Scholar 

  • F. Arena,F. Frusteri andA. Parmaliana, Appl. Catal. A 176 (1999) 189.

    Google Scholar 

  • N. Nag,K.V.R. Chary andV.S. Subrahmanyam, J. Chem. Soc. Chem. Commun. (1986) 1147.

  • M. Faraldos,J.A. Anderson,M.A. Banares,J.L.G. Fierro and S.W. Weller, J. Catal. 168 (1997) 110.

    Google Scholar 

  • S. Tanabe,H.E. Davis,D. Wei andR.S. Weber, in: Proc. 11th Int. Congress on Catalysis, Studies in Surface Science and Catalysis, Vol. 101, eds. J.W. Hightower,W.N. Delgass,E. Iglesia andA.T. Bell ( Elsevier, Amsterdam, 1996 ) p. 337.

    Google Scholar 

  • G. Deo,I.E. Wachs andJ. Haber, Crit. Rev. Surf. Chem. 4 (1994) 141.

    Google Scholar 

  • A. Miyamoto,Y. Yamazaki,M. Inomata andY. Murakami, J. Phys. Chem. 85 (1981) 2366.

    Google Scholar 

  • M. Inomata,A. Miyamoto andY. Murakami, J. Phys. Chem. 85 (1981) 2372.

    Google Scholar 

  • N.Y. Topsøe,H. Topsøe andJ.A. Dumesic, J. Catal. 151 (1995) 226.

    Google Scholar 

  • N.Y. Topsøe,J.A. Dumesic andH. Topsøe, J. Catal. 151 (1995) 241.

    Google Scholar 

  • W.E. Franeth,E.M. McCarron,A.W. Sleight andR.H. Staley, Langmuir 3 (1987) 217.

    Google Scholar 

  • W.E. Franeth,R.H. Staley andA.W. Sleight, J. Am. Chem. Soc. 108 (1986) 2327.

    Google Scholar 

  • W.E. Franeth,F. Ohuchi,R.H. Staley,U. Chowdhry andA.W. Sleight, J. Phys. Chem. 89 (1985) 2493.

    Google Scholar 

  • W.H. Cheng,U. Chowdhry,A. Ferretti,L.E. Firment,R.P. Groff,C.J. Machiels,E.M. McCarron,F. Ohuchi,R.H. Staley andA.W. Sleight, in: Heterogeneous Catalysis, Proc. 2nd Symp. IUCCP, Dept. of Chemistry, Texas A&M, ed. B.L. Shapiro ( Texas A&MUniv. Press, College Station, TX, 1984 ) p. 165.

    Google Scholar 

  • K.S. Kim andM.A. Barteau, Langmuir 4 (1988) 533.

    Google Scholar 

  • R.P. Groff, J. Catal. 84 (1984) 215.

    Google Scholar 

  • L. Burcham,Ph.D. thesis, Lehigh University (1999).

  • W. Holstein andC. Machiels, J. Catal. 162 (1996) 118.

    Google Scholar 

  • J.M. Tatibouët, Appl. Catal. A 148 (1997) 213.

    Google Scholar 

  • R.C. Weast, ed., Handbook of Chemistry and Physics ( CRC Press, Boca Raton, 1986–1987).

    Google Scholar 

  • L.E. Briand, W.E. Farneth and I.E. Wachs, Catal. Today, in press.

  • G. Deo andI.E. Wachs, J. Catal. 146 (1994) 323.

    Google Scholar 

  • N. Arora,G. Deo,I.E. Wachs andA.M. Hirt, J. Catal. 159 (1996) 1.

    Google Scholar 

  • G. Boreskov, in: Catalysis Science and Technology, eds. J.R. Anderson andM. Boudart, Vol. 3 ( Springer, New York, 1982 ) p. 62.

    Google Scholar 

  • C.T. Williams,C.G. Takoudis andM.J. Weaver, J. Phys. Chem. 102 (1998) 406.

    Google Scholar 

  • C.T. Williams,H.Y.H. Chan,A.A. Tolia,M.J. Weaver andC.G. Takoudis, Ind. Eng. Chem. Res. 37 (1998) 2307.

    Google Scholar 

  • H.Y.H. Chan,C.T. Williams,M.J. Weaver andC.G. Takoudis, J. Catal. 174 (1998) 191.

    Google Scholar 

  • C.B. Wang,G. Deo andI.E. Wachs, J. Phys. Chem. 103 (1999) 5645.

    Google Scholar 

  • A. Knop-Gericke,M. Havecker,T. Schedel-Niedrig andR. Schlögl, Catal. Lett. 66 (2000) 215.

    Google Scholar 

  • H. Werner,D. Herein,G. Schulz,U. Wild andR. Schlögl, Catal. Lett. 49 (1997) 109.

    Google Scholar 

  • G. Deo, H. Hu and I.E.Wachs, unpublished results.

  • H. Knözinger,K. Kochloefl andW. Meyer, J. Catal. 28 (1973) 69.

    Google Scholar 

  • J.M. Parera andN.S. Figoli, J. Catal. 14 (1969) 303.

    Google Scholar 

  • I.E. Wachs,J.M. Jehng,G. Deo,H. Hu andN. Arora, Catal. Today 28 (1996) 199.

    Google Scholar 

  • M. Ai, J. Catal. 54 (1978) 426.

    Google Scholar 

  • N. Arora,G. Deo,I.E. Wachs andA.M. Hirt, J. Catal. 159 (1996) 1.

    Google Scholar 

  • G.M. Schwab, Surf. Sci. 13 (1969) 198.

    Google Scholar 

  • P. Fuderer-Luetic andI. Sviben, J. Catal. 4 (1965) 109.

    Google Scholar 

  • M. Ai, in: Proc. 7th Int. Congress on Catalysis, Tokyo, 1980, eds. T. Seiyama andK. Tanabe ( Elsevier, New York, 1981 ) p. 1060.

    Google Scholar 

  • M. Ai, J. Catal. 54 (1978) 426.

    Google Scholar 

  • P. Forzatti,E. Tronconi,A.S. Elmi andG. Busca, Appl. Catal. A 157 (1997) 387.

    Google Scholar 

  • G. Busca, Catal. Today 27 (1996) 457.

    Google Scholar 

  • W. Zhang,S.T. Oyama andW.L. Holstein, Catal. Lett. 39 (1996) 67.

    Google Scholar 

  • C.J. Machiels andA.W. Sleight, J. Catal. 76 (1982) 238.

    Google Scholar 

  • F. Roozeboom,P.D. Cordingley andP.J. Gellings, J. Catal. 68 (1981) 464.

    Google Scholar 

  • W.J.M. Rootsaert andW.H.M. Sachtler, Z. Phys. Chem. 26 (1960) 16.

    Google Scholar 

  • M.A. Barteau, Catal. Lett. 8 (1991) 175.

    Google Scholar 

  • W.M.H. Sachtler andN.H. De Boer, in: Proc. 3rd Int. Congress on Catalysis, Amsterdam, 1964 ( Wiley, New York, 1965 ) p. 240.

    Google Scholar 

  • W.M.H. Sachtler,G.J.H. Dorgelo,J. Fahrenfort andR.J.H. Voorhoeve, in: Proc. 4th Int. Congress on Catalysis, Moscow, 1968, ed. B.A. Kazansky ( Adler, New York, 1968 ) p. 454.

    Google Scholar 

  • L.E. Briand and I.E. Wachs, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badlani, M., Wachs, I.E. Methanol: A “Smart” Chemical Probe Molecule. Catalysis Letters 75, 137–149 (2001). https://doi.org/10.1023/A:1016715520904

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016715520904

Navigation