Skip to main content
Log in

Preparation and Characterization of SnO2-Based Composite Metal Oxides: Active and Thermally Stable Catalysts for CH4 Oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of SnO2-based catalysts modified by Fe, Cr and Mn were prepared by the combination of redox reaction and co-precipitation methods, and applied to catalytic CH4 oxidation. The modified catalysts show generally higher activity than the unmodified SnO2. XRD analysis indicates that Fe, Cr and Mn cations could be incorporated into the lattice of rutile SnO2 (cassiterite) to form solid solution structure. As a result, more reducible and active oxygen species was formed in the samples, as substantiated by the H2-TPR results. Moreover, the specific surface areas of the modified catalysts are much higher than that of pure SnO2 and their crystallite sizes are smaller, indicating they are more resistant to thermal sintering. Indeed, the high specific surface areas and the formation of more active oxygen species in the modified samples are believed to be the predominant reasons leading to their enhanced CH4 oxidation activity. Eventually, it is noted that SnCrO displays not only remarkable CH4 oxidation activity, but also potent resistance to SO2 and water deactivation, which makes it a promising catalyst with the potential to be applied in some real CH4 oxidation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Li andJ.N. Armor, Appl. Catal. B 3 (1994) 275.

    Google Scholar 

  2. J.K. Lampert,M.S. Kazi andR.J. Farrauto, Appl. Catal. B 14 (1997) 211.

    Google Scholar 

  3. K. Fujimoto,F.H. Ribeiro,M. Avalos-Borja andE. Iglesia, J. Catal. 179 (1998) 431.

    Google Scholar 

  4. W.S. Epling andG.B. Hoflund, J. Catal. 182 (1999) 5.

    Google Scholar 

  5. Lj. Kundakovic andM. Flytzani-Stephanopoulos, Appl. Catal. A 183 (1999) 35.

    Google Scholar 

  6. X. Wang andY.C. Xie, Catal. Lett. 72 (2001) 52.

    Google Scholar 

  7. R. Leanza,I. Rosseti,L. Fabbrini,C. Oliva andL. Forni, Appl. Catal. B 28 (2000) 55.

    Google Scholar 

  8. K. Sekizawa,H. Widjaja,S. Maeda,Y. Ozawa andK. Eguchi, Appl. Catal. A 200 (2000) 211.

    Google Scholar 

  9. R. Burch,D.J. Crittle andM.J. Hayes, Catal. Today 47 (1999) 229.

    Google Scholar 

  10. M.M. Zwinkel,S.G. Jaras andP.C. Menon, Catal. Rev. Sci. Eng. 35 (1993) 319.

    Google Scholar 

  11. M. Shelef andG.W. Graham, Catal. Rev. Sci. Eng. 36 (1994) 433.

    Google Scholar 

  12. S.L. Sharp,G. Kumar,E.P. Vicenzi,A.B. Bocarsly andM. Heibel, Chem. Mater. 10 (1998) 880.

    Google Scholar 

  13. Y. Gao,H.B. Zhao andB.Y. Zhao, J. Mater. Sci. 35 (2000) 917.

    Google Scholar 

  14. C.V. Santilli,S.H. Pulcinelli,G.E.S. Brito andV. Briois, J. Phys. Chem. B 103 (1999) 2660.

    Google Scholar 

  15. V.G. Rienacker andJ. Scheve, Z. Anorg. Allg. Chem. B 328 (1964) 201.

    Google Scholar 

  16. J. Scheve andE. Scheve, Z. Anorg. Allg. Chem. B 333 (1964) 143.

    Google Scholar 

  17. Yu. Sheve andA.V. Krylova, Kinet. Catal. (English Transl.) (1970) 215.

  18. M.J. Fuller andM.E. Warwick, J. Chem. Soc. Chem. Commun. (1973) 210.

  19. M.J. Fuller andM.E. Warwick, J. Catal. 29 (1973) 441.

    Google Scholar 

  20. M.J. Fuller andM.E. Warwick, J. Catal. 34 (1974) 445.

    Google Scholar 

  21. P.G. Harrison,C. Bailey andW. Azelee, J. Catal. 186 (1999) 147.

    Google Scholar 

  22. S.K. Kulshreshtha,M.M. Gadgil andR. Sasikala, Catal. Lett. 37 (1996) 181.

    Google Scholar 

  23. G.C. Bond,L.R. Molloy andM.J. Fuller, J. Chem. Soc. Chem. Commun. (1975) 796.

  24. F. Solymosi andJ. Kiss, J. Chem. Soc. Chem. Commun. (1974) 509.

  25. F. Solymosi andJ. Kiss, J. Catal. 41 (1976) 202.

    Google Scholar 

  26. M.J. Fuller andM.E. Warwick, J. Catal. 42 (1976) 418.

    Google Scholar 

  27. F. Solymosi andJ. Kiss, J. Catal. 54 (1978) 42.

    Google Scholar 

  28. M.C. Kung,P.W. Park,D.W. Kim andH.H. Kung, J. Catal. 181 (1999) 1.

    Google Scholar 

  29. P.W. Park,H.H. Kung,D.W. Kim andM.C. Kung, J. Catal. 184 (1999) 440.

    Google Scholar 

  30. J. Ma,Y.X. Zhu,J.Y. Wei,X.H. Cai andY.C. Xie, Stud. Surf. Sci. Catal. 130 (2000) 617.

    Google Scholar 

  31. F. Solymosi,J. Rasko,E. Papp,A. Oszko andT. Bansagi, Appl. Catal. A 131 (1995) 55.

    Google Scholar 

  32. S.K. Kulshreshtha andM.M. Gadgil, Appl. Catal. B 11 (1997) 291.

    Google Scholar 

  33. K. Grass andH.G. Lintz, J. Catal. 172 (1997) 446.

    Google Scholar 

  34. X. Wang andY.C. Xie, React. Kinet. Catal. Lett. 72 (2001) 115.

    Google Scholar 

  35. H. Widjaja,K. Sekizawa andK. Eguchi, Chem. Lett. (1998) 481.

  36. H. Widjaja,K. Sekizawa andK. Eguchi, Bull. Chem. Soc. Jpn. 72 (1999) 313.

    Google Scholar 

  37. D.R. Schryer,B.T. Upchurch,J.D. Vannorman,K.G. Brown andJ. Schryer, J. Catal. 122 (1990) 193.

    Google Scholar 

  38. L.S. Sun,S.Y. Li andB.L. Li, React. Kinet. Catal. Lett. 62 (1997) 151.

    Google Scholar 

  39. C. Xu,J. Tamaki,N. Miura andN. Yamazoe, Chem. Lett. (1990) 441.

  40. M. Machida,K. Eguchi andH. Arai, J. Catal. 103 (1987) 385.

    Google Scholar 

  41. L.C. Yan andL.T. Thompson, Appl. Catal. A 171 (1998) 219.

    Google Scholar 

  42. Y.C. Xie andY.Q. Tang, Adv. Catal. 37 (1990) 1.

    Google Scholar 

  43. X. Wang andY.C. Xie, React. Kinet. Catal. Lett. 71 (2000) 3.

    Google Scholar 

  44. X.Y. Wang,B.Y. Zhao,D.E. Jiang andY.C. Xie, Appl. Catal. A 188 (1999) 201.

    Google Scholar 

  45. F. Okada,A. Satsuma,A. Furuta,A. Miyamoto,T. Hattori andY. Murakami, J. Phys. Chem. 94 (1990) 5900.

    Google Scholar 

  46. P.G. Harrison,N.C. Lloyd,W. Daniel,C. Bailey andW. Azelee, Chem. Mater. (1999) 896.

  47. M. Baldi,V.S. Escribano,J.M.G. Amores,F. Milella andG. Busca, Appl. Catal. B 17 (1998) L175.

    Google Scholar 

  48. N.E. Fouad,H. Knözinger andM.I. Zaki, Z. Phys. Chem. 186 (1994) 231.

    Google Scholar 

  49. X. Wang andY.C. Xie, React. Kinet. Catal. Lett. 70 (2000) 43.

    Google Scholar 

  50. E.R. Stobbe,B.A. De Boer andJ.W. Geus, Catal. Today 47 (1999) 161.

    Google Scholar 

  51. X. Wang, Ph.D. thesis, Peking University (1998).

  52. X. Wang andY.C. Xie, React. Kinet. Catal. Lett. 72 (2001) 229.

    Google Scholar 

  53. X. Wang andY.C. Xie, Chem. Lett. (2001) 216.

  54. H. Kung andM. Kung, Adv. Catal. 33 (1984) 159.

    Google Scholar 

  55. T. Seiyama, Catal. Rev. Sci. Eng. 34 (1992) 281.

    Google Scholar 

  56. P.G. Harrison,C. Bailey,W. Daniel,D. Zhao,I.K. Ball,D. Goldfarb,N.C. Lloyd,C. Bailey andW. Azelee, Chem. Mater. (1999) 3643.

  57. P.B. Fabritchnyl,N.R. Sudakova,V.V. Berentsveig,G. Demazeau,M.I. Afanasov andJ. Etourneau, J. Mater. Chem. 2 (1992) 763.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Xie, Yc. Preparation and Characterization of SnO2-Based Composite Metal Oxides: Active and Thermally Stable Catalysts for CH4 Oxidation. Catalysis Letters 75, 73–80 (2001). https://doi.org/10.1023/A:1016693601203

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016693601203

Navigation