Skip to main content
Log in

Synthesis of Platinum-Triruthenium Clusters Using the Zero-Valent Platinum Reagent Pt(nb)3: X-Ray Crystal Structures of Ru3Pt(CO)11(P-iPr3)2, Ru3Pt(μ-H)(μ3-η3-MeCCHCMe)(CO)9(P-iPr3), Ru3Pt(μ3-η2-PhCCPh)(CO)10(P-iPr3), Ru3Pt(μ-H)(μ4-N)(CO)10(P-iPr3) and Ru3Pt(μ-H)(μ4-η2-NO)(CO)10(P-iPr3)

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The complexes Pt(nb)3-n(P-iPr3)n (n=1, 2, nb=bicyclo[2.2.1]hept-2-ene), prepared in situ from Pt(nb)3, are useful reagents for addition of Pt(P-iPr3)n fragments to saturated triruthenium clusters. The complexes Ru3Pt(CO)11(P-iPr3)2 (1), Ru3Pt(μ-H)(μ33-MeCCHCMe)(CO)9(P-iPr3) (2), Ru3Pt(μ32-PhCCPh)(CO)10(P-iPr3) (3), Ru3Pt(μ-H)(μ4-N)(CO)10(P-iPr3) (4) and Ru3Pt(μ-H)(μ42-NO)(CO)10(P-iPr3) (5) have been prepared in this fashion. All complexes have been characterized spectroscopically and by single crystal X-ray determinations. Clusters 1–3 all have 60 cluster valence electrons (CVE) but exhibit differing metal skeletal geometries. Cluster 1 exhibits a planar-rhomboidal metal skeleton with 5 metal–metal bonds and with minor disorder in the metal atoms. Cluster 2 has a distorted tetrahedral metal arrangement, while cluster 3 has a butterfly framework (butterfly angle=118.93(2)°). Clusters 4 and 5 posseses 62 CVE and spiked triangular metal frameworks. Cluster 4 contains a μ4-nitrido ligand, while cluster 5 has a highly unusual μ42-nitrosyl ligand with a very long nitrosyl N–O distance of 1.366(5) Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. M. P. Mingos and R. W. M. Wardle (1985). Transit. Met. Chem. 10, 441.

    Google Scholar 

  2. L. J. Farrugia (1990). Adv. Organomet. Chem. 31, 301. (b) L. J. Farrugia, in E. W. Abel, F. G. A. Stone, and G. Wilkinson (eds.), Comprehensive Organometallic Chemistry II, Vol. 10 (Pergamon, Oxford, 1995), pp. 197–254.

    Google Scholar 

  3. D. M. P. Mingos (1984). Acc. Chem. Res. 17, 311. (b) S. M. Owen (1988). Polyhedron 7, 253. (c) D. M. P. Mingos, in D. F. Shriver, H. D. Kaesz, and R. D. Adams (eds.), The Chemistry of Metal Cluster Complexes (VCH, Weinheim, 1990), pp. 11–119.

  4. R. D. Adams, in D. F. Shriver, H. D. Kaesz, and R. D. Adams (eds.), The Chemistry of Metal Cluster Complexes (VCH, Weinheim, 1990), pp. 121–200.

    Google Scholar 

  5. D. Ellis, L. J. Farrugia, P. Wiegeleben, J. G. Crossley, A. G. Orpen, and P. N. Waller (1995). Organometallics 14, 481.

    Google Scholar 

  6. L. E. Crascall and J. L. Spencer (1990). Inorg. Synth. 28, 126.

    Google Scholar 

  7. L. J. Farrugia, D. Ellis, and A. M. Senior, in L. J. Farrugia (ed.), The Synergy Between Dynamics and Reactivity at Clusters and Surfaces (NATO ASI Series C, Vol. 465, 1995), pp. 141–157.

  8. S. Aime and D. Osella (1988). Organomet. Synth. 4, 253.

    Google Scholar 

  9. S. Rivomanana, G. Lavigne, N. Lugan, and J.-J. Bonnet (1991). Organometallics 10, 2285.

    Google Scholar 

  10. R. E. Stevens and W. L. Gladfelter (1983). Inorg. Chem. 22, 2034.

    Google Scholar 

  11. N. Walker and D. Stuart (1983). Acta Crystallogr. A39, 158.

    Google Scholar 

  12. G. M. Sheldrick, SHELX97. Programs for Crystal Structure Analysis, (Release 97-2) (University of Göttingen, Göttingen, Germany, 1997).

    Google Scholar 

  13. L. J. Farrugia (1999). J. Appl. Crystallogr. 32, 837.

    Google Scholar 

  14. L. J. Farrugia (1997). J. Appl. Crystallogr. 30, 565.

    Google Scholar 

  15. D. H. Farrar, R. R. Gukathasan, and J. A. Lunniss (1991). Inorg. Chim. Acta 179, 271.

    Google Scholar 

  16. (a) M. I. Bruce, J. G. Matisons, R. C. Wallis, R. M. Patrick, B. W. Skelton, and A. H. White (1983). J. Chem. Soc. Dalton Trans. 2365. (b) M. I. Bruce, J. G. Matisons, B. W. Skelton, and A. H. White (1983). J. Chem. Soc. Dalton Trans. 2375. (c) M. I. Bruce, M. J. Liddell, C. A. Hughes, J. M. Patrick, B. W. Skelton, and A. H. White (1988). J. Organomet. Chem. 347, 181.

  17. (a) L. J. Farrugia (1999). J. Organomet. Chem. 573, 60. (b) L. J. Farrugia, A. L. Gillon, D. Braga, and F. Grepioni (1999). Organometallics 18, 5022. (c) L. J. Farrugia, C. Rosenhahn, and S. Whitworth (1998). J. Cluster Sci. 9, 505. (d) L. J. Farrugia, A. M. Senior, D. Braga, F., Grepioni, A. G. Orpen, and J. G. Crossley (1996). J. Chem. Soc. Dalton Trans. 631.

  18. A. G. Orpen (1980). J. Chem. Soc. Dalton Trans. 2509.

  19. (a) E. Sappa, A. Tiripicchio, and P. Braunstein (1983). Chem. Rev. 83, 203. (b) P. R. Raithby and M. J. Rosales (1985). Adv. Inorg. Chem. Radiochem. 29, 167. (c) S. Deabate, R. Giordano, and E. Sappa (1997). J. Cluster Sci. 8, 407.

  20. E. Sappa, A. Tiripicchio, A. J. Carty, and G. E. Toogood (1987). Prog. Inorg. Chem. 35, 437.

    Google Scholar 

  21. (a) P. Ewing and L. J. Farrugia (1987). J. Organomet. Chem. 320, C47. (b) P. Ewing and L. J. Farrugia (1989). Organometallics 8, 1246. (c) L. J. Farrugia, N. McDonald, and R. D. Peacock (1994). J. Cluster Sci. 5, 341.

  22. W. L. Gladfelter (1985). Adv. Organomet. Chem. 24, 41.

    Google Scholar 

  23. E. P. Kyba, M. C. Kerby, R. P. Kasyap, J. A. Mountzournis, and R. E. Davis (1990). J. Am. Chem. Soc. 112, 905.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, D., Farrugia, L.J. Synthesis of Platinum-Triruthenium Clusters Using the Zero-Valent Platinum Reagent Pt(nb)3: X-Ray Crystal Structures of Ru3Pt(CO)11(P-iPr3)2, Ru3Pt(μ-H)(μ3-η3-MeCCHCMe)(CO)9(P-iPr3), Ru3Pt(μ3-η2-PhCCPh)(CO)10(P-iPr3), Ru3Pt(μ-H)(μ4-N)(CO)10(P-iPr3) and Ru3Pt(μ-H)(μ4-η2-NO)(CO)10(P-iPr3). Journal of Cluster Science 12, 243–257 (2001). https://doi.org/10.1023/A:1016687432275

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016687432275

Navigation