Skip to main content
Log in

Modular Arithmetic on Elements of Small Norm in Quadratic Fields

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We describe an algorithm which rapidly computes the coefficients of elements of small norm in quadraticfields modulo a positive integer. Our method requires that an approximation of the natural logarithm of thatquadratic field element is known to sufficient accuracy. To demonstrate the efficiency and utility of our method,we apply it to eliminate a number of exceptional cases of a theorem of Dujella and Pethő [9]involving Diophantine triples. In particular, we are able to show that Theorem 1.2 of [9] isunconditionally true for all k ≤ 100 with the possible exception of k = 37, for whichthe theorem holds under the assumption of the Extended Riemann Hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. S. Abel, Ein Algorithmus zur Berechnung der Klassenzahl und des Regulators reellquadratischer Ordnungen, Ph.D. Thesis, Universität des Saarlandes, Saarbrücken, Germany (1994).

    Google Scholar 

  2. A. Baker and H. Davenport, The equations 3x 2 z2 = y 2 and 8x 2-7 = z 2 , Quart. J. Math. Oxford Ser. (2), Vol. 20 (1969) pp. 129–137.

    Google Scholar 

  3. J. Buchmann, C. Thiel and H. C. Williams, Short representation of quadratic integers, Computational Algebra and Number Theory, Mathematics and its Applications, Vol. 325 (1995) pp. 159–185.

    Google Scholar 

  4. H. Cohen, A course in computational alegraic number theory, Graduate Texts in Mathematics, Vol. 138, Springer (1993).

  5. H. Cohn, Advanced Number Theory, Dover Publications, New York (1980).

    Google Scholar 

  6. D. A. Cox, Primes of the Form x 2 +ny 2 , Wiley, New York (1989).

    Google Scholar 

  7. A. Dujella, On Diophantine quintuples, Acta Arith., Vol. 81 (1997) pp. 69–79.

    Google Scholar 

  8. A. Dujella and A. Pethö, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2), Vol. 49 (1998) pp. 291–306.

    Google Scholar 

  9. A. Dujella and A. Petho, Integer points on a family of elliptic curves, Publ. Math. Debrecen, Vol. 56 (2000) pp. 321–335.

    Google Scholar 

  10. A. Grelak and A. Grytczuk, On the Diophantine equation ax 2 -by 2= c, Publ. Math. Debrecen, Vol. 44 (1994) pp. 291–299.

    Google Scholar 

  11. M. J. Jacobson, Jr., Subexponential Class Group Computation in Quadratic Orders, Ph.D. Thesis, Technische Universitat Darmstadt, Darmstadt, Germany (1999).

    Google Scholar 

  12. M. J. Jacobson, Jr., Computing discrete logarithms in quadratic orders, Journal of Cryptology, Vol. 13 (2000) pp. 473–492.

    Google Scholar 

  13. M. J. Jacobson, Jr., A. Pinter and P. G. Walsh, Acomputational approach for solving y 2 = 1k +2k +·· ·+x k, submitted to Math. Comp. (2001).

  14. The LiDIA Group, LiDIA: a c++ library for computational number theory, Software, Technische Universität Darmstadt, Germany (1997), See http://www.informatik.tu-darmstadt.de/TI/LiDIA.

    Google Scholar 

  15. P. G. Walsh, The Pell Equation and Powerful Numbers, Master' Thesis, University of Calgary, Calgary, Alberta (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobson, M.J., Williams, H.C. Modular Arithmetic on Elements of Small Norm in Quadratic Fields. Designs, Codes and Cryptography 27, 93–110 (2002). https://doi.org/10.1023/A:1016550519087

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016550519087

Navigation