Skip to main content
Log in

The Interaction of Cyanonaphthyridinomycin with DNA

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The characteristics of the in vitro interaction of cyanonaphthyridinomycin (CYANO) with DNA are described. Unlike naphthyridinomycin (NAP), CYANO is extremely dependent on reductive activation with dithiothreitol (DTT) to bind DNA. The reaction of CYANO with DNA is kinetically slower than that observed for NAP and is still linear after six hours incubation at room temperature. The extent of binding is pH dependent with acidic pH being inhibitory. CYANO, as with NAP, appears to bind to dG:dC base pairs in the minor groove of double stranded DNA. Studies using [C3H3:14CN] CYANO demonstrated that the cyanide group is lost when the drug binds to DNA. In the absence of DNA but in the presence of DTT, cyanide is still released from CYANO and the extent of release is also inhibited by acid pH conditions. These results suggest that the cyanide group comes off prior to binding of the antibiotic to DNA. The rate limiting step in the reaction of CYANO with DNA would appear to be the release of cyanide from the drug molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kluepfel, D., Baker, H. A., Piattoni, G., Sehgal, S. N., Sidorowicz, A., Singh, K., Vezina, C. (1975) J. Antibiotics 28, 497–502.

    Google Scholar 

  2. Singh, K., Sun, S., Kleupfel, D. (1976) Develop. in Indus. Microb. 17, 209–221.

    Google Scholar 

  3. Zmijewski, M. J., Miller-Hatch, K., Goebel, M. (1982) Antimicrob. Ag. Chemo. 21, 787–793.

    Google Scholar 

  4. Zmijewski, Jr., M. J., Miller-Hatch, K., Mikolajczak, M. (1984) Accepted for publication, Chemico-Bio. Interactions.

  5. Petrusek, R. L., Anderson, G. L., Garner, T. F., Fannin, W. L., Kaplan, D. T., Zimmer, S. G., Hurley, L. H. (1981) Biochem. 20, 1111–1119.

    Google Scholar 

  6. Lown, J. W., Joshua, A. V., Lee, L. S. (1982) Biochem. 21, 419–428.

    Google Scholar 

  7. Ishiguro, K., Takahashi, K., Yazawa, K., Sakiyama, S., Arai, T. (1981) J. Biol. Chem. 256, 2162–2167.

    Google Scholar 

  8. Zmijewski, Jr., M. J., Goebel, M. (1982) J. Antibiotics 35, 524–526.

    Google Scholar 

  9. Zmijewski, Jr., M. J., Mikolajczak, M. (1983) J. Antibiotics 36, 1767–1769.

    Google Scholar 

  10. Itoh, J., Omoto, S., Inouye, S., Kodama, Y., Hisamatsu, T., Niida, T., Ogawa, Y. (1982) J. Antibiotics 35, 642–644.

    Google Scholar 

  11. Hayashi, T., Noto, T., Nawata, Y., Ikazaki, H., Sawada, M., Ando, K. (1982) J. Antibiotics 35, 771–777.

    Google Scholar 

  12. Hayashi, T., Okutomi, T., Suzuki, S., Okazaki, H. (1983) J. Antibiotics 36, 1228–1235.

    Google Scholar 

  13. Zmijewski, Jr., M. J. Mikolajczak, M., Viswanatha, V., Hruby, V. J. (1982) J. Amer. Chem. Soc. 104, 4969–4971.

    Google Scholar 

  14. Subirana, J. A., Vives, J. L. (1981) Biopolymers 20, 2281.

    Google Scholar 

  15. Erickson, R. L., Szyblaski, W. (1984) Virology 22, 111–113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zmijewski, M.J., Mikolajczak, M. The Interaction of Cyanonaphthyridinomycin with DNA. Pharm Res 2, 77–80 (1985). https://doi.org/10.1023/A:1016390728164

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016390728164

Keywords

Navigation