Skip to main content
Log in

Thermal Transport Properties of Water and Ice from One Single Experiment

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

For the first time, the transient hot wire (THW) and the transient hot strip (THS) techniques were used to measure the thermal conductivity and thermal diffusivity of ice and the thermal conductivity of liquid water simultaneously in one run. With the additional knowledge of the thermal diffusivity of water from a subsequent single-phase run, the latent heat of melting can be determined as well as the time dependent position of the interface between both phases during an experiment. The results of the dual-phase measurements are compared with those obtained in the single-phase experiments using the same simple setup. The composite THS and THW signals are interpreted based on the underlying phase-change-theory of Stefan and Neumann, as outlined briefly in the text.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. E. Gustafsson, E. Karawacki, and M. N. Khan, J. Phys. D 12:1411 (1979).

    Google Scholar 

  2. S. E. Gustafsson, Z. Naturforschg. 22a:1005 (1967).

    Google Scholar 

  3. S. E. Gustafsson, N. O. Halling, and R. A. E. Kjellander, Z. Naturforschg. 23a:682 (1968).

    Google Scholar 

  4. S. E. Gustafsson, E. Karawacki, and M. N. Khan, J. Phys. D. Appl. Phys. 52:2596 (1981).

    Google Scholar 

  5. S. E. Gustafsson, E. Karawacki, and M. A. Chohan, J. Phys. D. Appl. Phys. 19:727 (1986).

    Google Scholar 

  6. U. Groß, Y. W. Song, and E. Hahne, Fluid Phase Equilibria 76:273 (1992).

    Google Scholar 

  7. W. A. Wakeham, A. Nagashima, and J. V. Sengers, in Measurement of the Transport Properties of Fluids, Vol. III (Blackwell Scientific Publications, Oxford, 1992).

    Google Scholar 

  8. A. I. Johns, A. C. Scott, J. T. R. Watson, D. Ferguson, and A. A. Clifford, Philos. Trans. Roy. Soc. London Ser. A 325:295 (1988).

    Google Scholar 

  9. U. Hammerschmidt, in Proc. 24th Int'l. Thermal Cond. Conf. (Pittsburgh, 1997).

  10. W. Sabuga and U. Hammerschmidt, Int. J. Thermophys. 16:557 (1995).

    Google Scholar 

  11. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, in Thermophysical Properties of Materials (Plenum Press, New York, 1970).

    Google Scholar 

  12. E. H. Ratcliffe, Phil. Mag. 7:1197 (1962).

    Google Scholar 

  13. M. L. V. Ramirez, C. A. Nieto de Castro, Y. Nagasaka, A. Nagashima, M. J. Assael, and W. A. Wakeham, J. Phys. Chem. Ref. Data 24:1377 (1995).

    Google Scholar 

  14. U. Hammerschmidt and W. Sabuga, Int. J. Thermophys. 21:217 (2000).

    Google Scholar 

  15. J. J. Healy, J. J. de Groot, and J. Kestin, Physica 82C:392 (1976).

    Google Scholar 

  16. R. J. Model and U. Hammerschmidt, in Proc. 6th Int'l. Conf. on Advanced Computational Methods in Heat Transfer, Heat Transfer 2000, Madrid, Spain (June 26–28, 2000).

  17. J. Stefan, Annalen der Physik und Chemie 42:269 (1891).

    Google Scholar 

  18. F. Neumann, lectures (1912).

  19. M. N. Özisik, in Heat Conduction, 2nd ed. (John Wiley, New York, 1993).

    Google Scholar 

  20. D. W. James, J. Mat. Sci. 3:540 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammerschmidt, U. Thermal Transport Properties of Water and Ice from One Single Experiment. International Journal of Thermophysics 23, 975–996 (2002). https://doi.org/10.1023/A:1016381801518

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016381801518

Navigation