Skip to main content
Log in

Effects of Early Contact with Maternal Parent on Locomotor Activity and Exploratory Behavior in Spiderlings of Hogna carolinensis (Araneae: Lycosidae)

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

In this study we investigated the effect of rearing conditions (stimulus complexity) on the locomotor activity and exploratory behavior of spiderlings of Hogna carolinensis in a novel open field arena. Experimental groups consisted of spiderlings that were allowed to remain with their maternal parent for 1 day (group 1), 3 days (group 2), and 5 days (group 3) after emergence from their egg sacs, and those who had no contact (group 4) with a maternal parent. Spiderlings that had physical contact with their mothers for 3 and 5 days required significantly less time to enter the arena, to reach the central grid area of the arena, and for an initial return to the start box than spiderlings in groups 1 and 4. In addition, spiderlings in groups 2 and 3 exhibited a significantly greater number of grid crossings as compared to groups 1 and 4, and spent more time in the arena. This is the first demonstration that environmental complexity, in the form of a social factor such as physical contact with a maternal parent, can affect the subsequent behavior of spiderlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Adamo, S. A., Linn, C. E., and Hoy, R. R. (1995). The role of neurohormonal octopamine during ‘fight or flight’ behavior in the field cricket Gryllus bimaculatus. J. Exp. Biol.198: 1691–1700.

    Google Scholar 

  • Archer, J. (1973). Tests for emotionality in rats and mice: a review.Anim. Behav. 21:205–235.

    Google Scholar 

  • Bieber, M., and Fuldner, D. (1979). Brain growth during the adult stage of a holometabolous insect.Naturwissenschaften 66: 426.

    Google Scholar 

  • Braithwaite, V. A., and Newman, J. A. (1994). Exposure to familiar visual landmarks allows pigeons to home faster. Anim. Behav. 48: 1482–1484.

    Google Scholar 

  • Burger, J. (1991). Effects of incubation temperature on behavior of hatchling pine snakes: Implications for reptilian distribution. Behav. Ecol. Sociobiol. 28: 297–303.

    Google Scholar 

  • Clayton, N. S. (1995). The neuroethological development of food-storing memory: Use it or lose it. Behav. Brain Res. 74: 153–159.

    Google Scholar 

  • Clayton, N. S., and Krebs, J. R. (1994). Hippocampal growth and attrition in birds affected by experience. Proc. Natl. Acad. Sci. U.S.A. 91: 7410–7414.

    Google Scholar 

  • Coss, R. G., and Brandon, J. G. (1982). Rapid changes in dendritic spine morphology during the honeybee's first orientation flight. In Breed, M. D., Michener, C. D., and Evans, H. E. (eds.), The Biology of Social Insects,Westview Press, Boulder, Colorado, pp.338–342.

    Google Scholar 

  • Crabbe, J. C., Wahlsten, D., and Dudek, B. C. (1999). Genetics of mouse behavior: Interactions with laboratory environment. Science 284: 1670–1671.

    Google Scholar 

  • Eason, R. R. (1964). Maternal care as exhibited by wolf spiders (lycosids).Proc. Arkansas Acad. Sci. 18: 13–19.

    Google Scholar 

  • Easter, S. S., Purver, D., Rakic, P., and Spitzer, N. C. (1985). The changing view of neuronal specificity. Science 230: 507–511.

    Google Scholar 

  • Gould, E. (1994). The effects of adrenal steroids and excitatory input on neuronal birth and survival.Ann. N.Y. Acad. Sci. 743: 73–92.

    Google Scholar 

  • Govind, C. K., and Pearce, J. (1981). Remodeling of multiterminal innervation by nerve terminal sprouting in an identifiable lobster motoneuron. Science 212: 1522–1524.

    Google Scholar 

  • Hall, F. S. (1998). Social deprivation of neonatal, adolescent, and adult rats has distinct neurochemical and behavioral consequences. Crit. Rev. Neurobiol. 12: 129–162.

    Google Scholar 

  • Harris, J.W., and Woodring, J. (1992). Effects of stress, age, season, and source colony on levels of octopamine, dopamine, and serotonin in the honeybee (Apis mellifera) brain. J. Insect Physiol. 38: 29–35.

    Google Scholar 

  • Holson, R., and Sackett, G. P. (1984). Effects of isolation on learning by mammals. In Bower, G. H. (ed.), The Psychology of Learning and Motivation, Academic Press, New York, pp. 199–254.

    Google Scholar 

  • Hughes, R. N. (1968). Behavior of male and female rats with free choice of two environments differing in novelty. Anim. Behav. 16: 92–96.

    Google Scholar 

  • Klebaur, J. E., and Bardo, M. T. (1999). The effects of anxiolytic drugs on novelty-induced place preference. Behav. Brain Res. 101: 51–57.

    Google Scholar 

  • Kravitz, E. A. (1988). Hormonal control of behavior: Amines and the biasing of behavioral output in lobsters. Science 241: 1775–1780.

    Google Scholar 

  • Lomassese, S. S., Strambi, C., Strambi, A., Charpin, P. T., Augier, R., Aouane, A. K., and Cayre, M. (2000). Influence of environmental stimulation on neurogenesis in the adult insect brain. J. Neurobiol. 45: 162–171.

    Google Scholar 

  • May, M. L. (1985). Thermoregulation. In Kerkut, G. A., and Gilbert, A. (eds.), Comprehensive Insect Physiology, Biochemistry, and Pharmacology, Vol. 4, Pergamon Press, New York, pp. 507–522.

    Google Scholar 

  • Nilsson, M., Perfilieva, E., Johansson, U., and Orwar, O. (1999). Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J. Neurobiol. 39: 569–578.

    Google Scholar 

  • Pacteau, C., Einon, D., and Sinden, J. (1989). Early rearing environment and dorsal hippocampal ibotenic acid lesions: Long-term influences on spatial learning and alternation in the rat. Behav. Brain Res. 34: 79–96. Early Experience and Exploratory Behavior inWolf Spiderlings 465

    Google Scholar 

  • Poucet, B., Chapuis, N., Durup, M., and Thinus-Blanc, C. (1986).Astudy of exploratory behavior as an index of spatial knowledge in hamsters. Anim. Learn. Behav. 14: 93–100.

    Google Scholar 

  • Punzo, F. (1985). Neurochemical correlates of learning and role of the basal forebrain in the brown anole, Anolis sagrei (Lacertilia: Iguanidae). Copeia 1985: 409–414.

    Google Scholar 

  • Punzo, F. (1988). Learning and localization of brain function in the tarantula spider, Aphonopelma chalcodes (Orthognatha, Theraphosidae). Comp. Biochem. Physiol. 89A: 465–470.

    Google Scholar 

  • Punzo, F. (1991). The effects of temperature and moisture on survival capacity, locomotor behavior, cuticular permeability, osmoregulation, and metabolism in Centruoides hentzi (Banks) (Scorpiones, Buthidae). Comp. Biochem. Physiol. 100A: 833–837.

    Google Scholar 

  • Punzo, F. (1993). An analysis of the free amino acids, neurotransmitters, and enzymes in the nervous system of Solifugae (Arachnida). Comp. Biochem. Physiol. 106C: 699–703.

    Google Scholar 

  • Punzo, F. (1994). Changes in brain amine concentrations associated with postembryonic development in the solifugid, Eremobates palpisetulosus Fichter (Arachnida, Solifugae, Eremobatidae). J. Arachnol. 22: 1–5.

    Google Scholar 

  • Punzo, F. (1996). Localization of brain function and neurochemical events associated with learning in insects. Rec. Trends Comp. Biochem. Physiol. 2: 9–16.

    Google Scholar 

  • Punzo, F. (2000). Desert Arthropods: Life History Variations, Springer, Heidelberg, Germany.

  • Punzo, F. (2001). Neurochemical correlates of agonistic interactions and dominance between males of the brown anole, Anolis sagrei. Fl. Sci. 64: 131–139.

    Google Scholar 

  • Punzo, F. (2002). Possible role of monoamines in the dispersal behavior of spiderlings of Hogna carolinensisWalckenauer (Araneae, Lycosidae). Bull. Br. Arachnol. Soc. (in press).

  • Punzo, F., and Punzo, T. (2002). Monoamines in the brain of tarantulas (Aphonopelma hentzi) (Araneae:Theraphosidae): Differences associated with male agonistic interactions. J. Arachnol. 29: 388–395.

    Google Scholar 

  • Renner, M. J., and Rosenzweig, M.R. (1986). Object interactions in juvenile rats (Rattus norvegicus): Effects of different experiential histories.J. Comp. Psychol. 100: 229–236.

    Google Scholar 

  • Rosenzweig, M. R. (1966). Environmental complexity, cerebral change, and behavior.Am. Psychol. 21: 321–332.

    Google Scholar 

  • Rosenzweig, M. R., and Bennett, E. L. (1996). Psychobiology of plasticity: Effects of training and experience on brains and behavior. Behav. Brain Res. 78: 57–65.

    Google Scholar 

  • Rovner, J. S., Higashi, G. A., and Foelix, R. A. (1973). Maternal behavior in wolf spiders: The role of abdominal hairs. Science 182: 1153–1155.

    Google Scholar 

  • Sandeman, R., and Sandeman, D. (2000). Impoverished and enriched living conditions influence proliferation and survival of neurons in crayfish brain.J. Neurobiol. 45: 215–226.

    Google Scholar 

  • Smulders, T. V., Shiflett, M.W., Sperling, A. J., and DeVoogd, T. J. (2000). Seasonal changes in neuron numbers in thr hippocampal formation of a food-hoarding bird: The black-capped chickadee. J. Neurobiol. 44: 414–422.

    Google Scholar 

  • Sokal, B., and Rohlf, R. J. (1995). Biometry, 2nd ed.,W. H. Freeman, New York.

    Google Scholar 

  • Stöhr, T., Wermeling, D. S., Szuran, T., Pliska, V., Domeny, A., Welzl, H., Weiner, I., and Feldon, J. K. (1998). Differential effects of prenatal stress in two inbred strains of rats.Pharmacol. Biochem. Behav. 59: 799–805.

    Google Scholar 

  • Wainright, P. E., Levesque, S., Krempulec, L., Bulam-Flemming, B. H., and McCutcheon, D. (1993). Effects of environmental enrichment on cortical depth and Morris-Maze performance in B6D2F2 mice exposed prenatally to ethanol. Neurotoxicol Teratol. 15: 11–20.

    Google Scholar 

  • Walsh, R. N., and Cummins, R. A. (1976). The open-field test: A critical review. Psychol. Bull. 83: 482–504.

    Google Scholar 

  • Xu, L., Anwyl, R., and Rowan, M. J. (1998). Spatial exploration induces a persistent reversal of long-term potentiation in rat hippocampus. Nature 394: 891–894.

    Google Scholar 

  • Zimmermann, A., Stauffacher, M., Langhans, W., and Wü1rber, H. (2001). Enrichmentdependent differences in novelty exploration in rats can be explained by habituation. Behav. Brain Res. 121: 11–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Punzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Punzo, F., Alvarez, J. Effects of Early Contact with Maternal Parent on Locomotor Activity and Exploratory Behavior in Spiderlings of Hogna carolinensis (Araneae: Lycosidae). Journal of Insect Behavior 15, 455–465 (2002). https://doi.org/10.1023/A:1016351531676

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016351531676

Navigation