Skip to main content
Log in

Biology of Membrane Transport Proteins

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Membrane transporter proteins are encoded by numerous genes that can be classified into several superfamilies, on the basis of sequence identity and biological function. Prominent examples include facilitative transporters, the secondary active symporters and antiporters driven by ion gradients, and active ABC (ATP binding cassette) transporters involved in multiple-drug resistance and targeting of antigenic peptides to MHC Class I molecules. Transported substrates range from nutrients and ions to a broad variety of drugs, peptides and proteins. Deleterious mutations of transporter genes may lead to genetic diseases or loss of cell viability. Transporter structure, function and regulation, genetic factors, and pharmaceutical implications are summarized in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. D. Marger and M. H. Saier. A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. TIBS 18:13–20 (1993).

    Google Scholar 

  2. J. K. Griffith, M. E. Baker, D. A. Rouch, M. G. Page, R. A. Skurray, I. T. Paulsen, K. F. Chater, S. A. Baldwin, P. J. Henderson. Membrane transport proteins: implications of sequence comparisons. Curr. Biol. 4:684–695 (1992).

    Google Scholar 

  3. H. Nikaido and M. H. Saier, Jr. Transport proteins in bacteria: common themes in their design. Science 258:936–942 (1992).

    Google Scholar 

  4. E. M. Wright, K. M. Hager and E. Turk. Sodium cotransport proteins. Current Biol. 4:696–702 (1992).

    Google Scholar 

  5. J. Reizer, A. Reizer, and M. H. Saier. The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstructed pathway of evolution and proposed functional differentiation of the two repeated halves of the proteins. Crit. Rev Biochem. and Mol. Biol. 28:235–257 (1993).

    Google Scholar 

  6. J. H. Kaplan, Molecular biology of carrier proteins. Cell: 72:13–18 (1993).

    Google Scholar 

  7. J. W. Kim, E. I. Closs, L. M. Albritton, and J. M. Cunningham. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature 352:725–728 (1991).

    Google Scholar 

  8. G. I. Bell, T. Kayano, J. B. Buse, C. F. Burant, J. Takeda, D. Lin, H. Fukumoto and S. Seino. Molecular biology of mammalian glucose transporters. Diabetes Care. 13:198–208 (1990).

    Google Scholar 

  9. J. C. Vera, C. I. Rivas, J Fischbarg and D. W. Golde. Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Nature 364:79–82 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. S. S. Tate, N. Yan and S. Udenfriend. Expression cloning of Na+-independent neutral amino acid transporter from rat kidney. Proc. Natl. Acad. Sci. USA 89:1–5 (1992).

    Google Scholar 

  11. Y. J. Fel, Y. Kanai, S. Nussberger, V. Ganapathy, F. H. Leibach, M. F. Romero, S. K. Singh, W. F. Boron, M. A. Hediger. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 368:563–566 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. R. Liang, Y.-J. Fei, P. D. Prasad, S. Ramamoorthy, H. Han. T. L. Yang-Feng, M. A. Hediger, V. Ganapathy, and F. H. Leibach. Human intestinal H+/peptide cotransporter. J. Biol. Chem. 270:6456–6463 (1995).

    Google Scholar 

  13. W. Liu, R. Liang, S. Ramamoorthy, Y.-J. Fei, M. E. Ganapathy, M. A. Hediger, V. Ganapathy, and F. H. Leibach. Molecular cloning of PEPT2, a new member of the H+/peptide cotransporter family, from human kidney. Biophys. Biochim. Acta 235:461–466 (1995).

    Google Scholar 

  14. A. M. Pajor, E. M. Wright. Cloning and functional expression of a mammalian Na+/nucleoside cotransporter. A member of the SGLT family. J. Biol. Chem. 267:3557–3560 (1992).

    Google Scholar 

  15. Q. Q. Huang, S. Y. Yao, M. W. Ritzel et al. Cloning and functional expression of a complementary DNA encoding a mammalian nucleoside transport protein. J. Biol. Chem. 269:17757–17760 (1994).

    Google Scholar 

  16. S. Uchida, H. M. Kwon, A. Yamauchi, A. S. Preston, F. Marumo, and J. S. Handler. Molecular cloning of the cDNA for an MDCK cell Na+-and Cl-dependent taurine transporter that is regulated by hypertonicity. Proc. Natl. Acad. Sci. USA 89:8230–8234 (1992).

    Google Scholar 

  17. K. E. Smith, L. A. Borden, C. D. Wang, P. R. Hartig, T. A. Branchek, and R. L. Weinshank. Cloning and expression of a high affinity taurine transporter from rat brain. Mol. Pharmacol. 42:563–569 (1992).

    Google Scholar 

  18. N. Kanai, R. Lu, J. A. Satriano, Y. Bao, A. W. Wolkoff, and V. L. Schuster. Identification and characterization of a prostaglandin transporter. Science 268:866–869 (1995).

    Google Scholar 

  19. C. Sardet, A. Franchi, J. Pouyssegur. Molecular cloning, primary structure and expression of the human growth factor-activatable Na+/H+ antiporter. Cell 56:271–280 (1989).

    Google Scholar 

  20. C. M. Tse, A. I. Ma, V. W. Yang, A. J. Watson, S. Levine, M. Montrose, J. Potter, C. Sardet, J. Pouyssegur and M. Donowitz. Molecular cloning and expression of a cDNA encoding the rabbit ileal villus cell basolateral membrane Na+/H+ exchanger. The EMBO J. 10:1957–1967 (1991).

    Google Scholar 

  21. A. Werner, M. L. Moore, N. Mantei, J. Biber, G. Semenza and H. Murer. Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proc. Natl. Acad. Sci. USA 88:9608–9612 (1991).

    Google Scholar 

  22. D. Markovich, J. Forgo, G. Stange, J. Biber, and H. Murer. Expression cloning of rat renal Na+/SO42− cotransport. Proc. Natl. Acad. Sci. USA 90:8073–8077 (1993).

    Google Scholar 

  23. D. Markovich, M. Bissig, V. Sorribas, B. Hagenbuch, P. J. Meier, and H. Murer. Expression of rat renal sulfate transport systems in Xenopus laevis oocytes. J. Biol. Chem. 269:3022–3026 (1994).

    Google Scholar 

  24. T. Pacholczyk, R. D. Blakely and S. G. Amara. Expression cloning of a cocaine-and antidepressant-sensitive human noradreline transporter. Nature 350:350–354 (1991).

    Google Scholar 

  25. S. Shimada, S. Kitayama, C. L. Lin, A. Patel, E. Nanthakumar, P. Gregor, M. Kuhar, G. Uhl. Cloning and Expression of a cocaine sensitive dopamine transporter complementary DNA. Science 254:576–579 (1991).

    Google Scholar 

  26. J. E. Kilty, D. Lorang, S. G. Amara. Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science 254:578 (1991).

    Google Scholar 

  27. B. J. Hoffman, E. Mezy, M. J. Brownstein. Cloning of a serotonin transporter affected by antidepressants. Science 254:579–580 (1991).

    Google Scholar 

  28. J. Guastella, N. Nelson, H. Nelson, L. Czyzyk, S. Keynan, M. C. Miedel, N. Davidson, H. A. Lester, B. I. Kanner. Cloning and expression of a rat brain GABA transporter. Science 249:1303–1306 (1990).

    Google Scholar 

  29. K. M. Kim, S. F. Kingsmore, H. Han, T. L. Yang-Feng, N. Godinot, M. F. Seldin, M. G. Caron, B. Giros. Cloning of the human glycine transporter type 1: molecular and pharmacological characterization of novel isoform variants and chromosomal localization of the gene in the human and mouse genomes. Mol. Pharmacol. 45:608–617 (1994).

    Google Scholar 

  30. G. Pines, N. C. Danbolt, M. Bjoras et al. Cloning and expression of a rat brain L-glutamate transporter. Nature 360:464–467 (1992).

    Google Scholar 

  31. Y. Liu et al., A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell 70, 539–551 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. N. Kartner and V. Ling. Multidrug resistance in cancer. Scientific Amer. 44–51 (1989).

  33. P. J. Thomas, P. Shenbagamurthi, X. Ysern, P. L. Pedersen. Cystic fibrosis transmembrane conductance regulator: nucleotide binding to a synthetic peptide. Science 251:555–557 (1991).

    Google Scholar 

  34. T. Spies, M. Bresnahan, S. Bahram, D. Arnold, G. Blanck, E. Mellins, D. Pious and R. DeMars. A gene in the human major histocompatibility complex class II region controlling the class I antigen presentation pathway. Nature 348:744–747 (1990).

    Google Scholar 

  35. J. J. Monaco, S. Cho, M. Attaya. Transport protein genes in the murine MHC: possible implications for antigen processing. Science 250:1723–1726 (1990).

    Google Scholar 

  36. W. A. Banks, A. J. Kastin and C. M. Barrera. Delivering peptides to the central nervous system: dilemma's and strategies. Pharm. Res. 8, 1345–1350 (1991).

    Google Scholar 

  37. T. Terasaki, Y. Deguchi, H. Sato, K. Hirai and A. Tsuji. In vivo transport of a dynorphin-like analgesic peptide, E-2078, through blood-brain barrier: an application of brain microdialysis. Pharm. Res. 8:815–820 (1991).

    Google Scholar 

  38. P. Dimroth. Na+-coupled alternative to H+-coupled primary transport systems in bacteria. BioEssays 13:463–468 (1991).

    Google Scholar 

  39. C. Palfrey and A. Cossins. Fishy tales of kidney function. Nature 371:377–378 (1994).

    Google Scholar 

  40. P. M. Deen, M. A. Verdijk, N. V. Knoers, B. Wieringa, L. A. Monnens, C. H. van Os, B. A. van Oost. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264:92–95 (1994).

    Google Scholar 

  41. G. You, C. P. Smith, Y. Kanal, W. Lee, M. Steizner and M. A. Hediger. Cloning and characterization of the vasopressin-regulated urea transporter. Nature 365:844–847 (1993).

    Google Scholar 

  42. M. J. Calonge et al. Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nature Genet. 6:420–425 (1994).

    Google Scholar 

  43. S. Varon and S. D. Skaper. The Na+, K+ pump may mediate the control of nerve cells by nerve growth factor. TIBS 22–25 (1983).

  44. P. M. Thomas et al. Mutations in the sulfonylurea receptor gene in familial persistant hyperinsulinemic hypoglycemia of infancy. Science 268:426–429 (1995).

    Google Scholar 

  45. L. Counillon, A. Franchi, and J. Pouysségur. A point mutation of the Na+/H+ exchanger gene (NHE1) and amplification of the mutated allele confer amiloride resistance upon chronic acidosis. Proc. Natl. Acad. Sci. USA 90:4508–4512 (1993).

    Google Scholar 

  46. M. Silverman. Structure and function of hexose transporters. Annu. Rev. Biochem. 60:757–794 (1991).

    Google Scholar 

  47. M. A. Hediger, M. J. Coady, T. S. Ikeda and E. M. Wright. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature 330:379–381 (1987).

    Google Scholar 

  48. B. Thorens, H. K. Sarkar, H. R. Kaback and H. F. Lodish. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney and β-pancreatic islet cells. Cell 55:281–290 (1988).

    Google Scholar 

  49. A. Castello, J. C. Manzaneque, M. Camps, A. Castillo, X. Testar, M. Palacin, A. Santos and A. Zorzano. Perinatal hypothyroidism impairs the normal transition of GLUT4 and GLUT1 glucose transporters from fetal to neonatal levels in heart and brown adipose tissue. J. Biol. Chem. 269:5905–5912 (1994).

    Google Scholar 

  50. R. Chakrabarti, J Buxton, M. Joly and S. Corvera. Insulinsensitive association of GLUT4 with endocytic clathrin-coated vesicles revealed with the use of brefeldin A. J. Biol. Chem. 269:7926–7933 (1994).

    Google Scholar 

  51. J. Yang and G. D. Holman. Comparison of GLUT4 and GLUT1 subcellular trafficking in basal and insulin-stimulated 3T3-L1 cells. J. Biol. Chem. 468:4600–4603 (1993).

    Google Scholar 

  52. B. A. Marshall, H. Murata, R. C. Hresko, M. Mueckler. Domains that confer intracellular sequestration of the GLUT4 glucose transporter in xenopus oocytes. J. Biol. Chem. 268:26193–26199 (1993).

    Google Scholar 

  53. C. C. Mastick, R. Aebersold and G. E. Lienhard. Characterization of a major protein in GLUT4 vesicles. J. Biol. Chem. 269:6089–6092 (1994).

    Google Scholar 

  54. L. Olsson, A. Goldstein and J. Stagsted. Regulation of receptor internalization by the major histocompatibility complex class I molecule. Proc. Natl. Acad. Sci. USA 91:9086–9090 (1994).

    Google Scholar 

  55. E. Turk, B. Zabel, S. Mundlos, J. Dyer and E. M. Wright. Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature 350:354–356 (1991).

    Google Scholar 

  56. C. R. Kahn. Causes of insulin resistance. Nature 373:384–385 (1995).

    Google Scholar 

  57. M. L. Liu, A. L. Olson, W. S. Moye-Rowley, J. B. Buse, G. I. Bell and J. E. Pessin. Expression and regulation of the human GLUT4/muscle-fat facilitative glucose transporter gene in transgenic mice. J. Biol. Chem. 267:11673–11676 (1992).

    Google Scholar 

  58. J. P. Bai and G. L. Amidon. Structural specificity of mucosal cell transport and metabolism of peptide drugs: implication for oral peptide drug delivery. Pharm. Res.

  59. M. Hu, L. Zheng, J. Chen, L. Liu, Y. Zhu, A. H. Dantzig, R. E. Stratford. Mechanisms of transport of quinapril in Caco-2 cell monolayers: comparison with cephalexin. Pharm. Res. in press.

  60. M. Brandsch, Y. Miyamoto, V. Ganapathy and F. H. Leibach. Expression and protein kinase C-dependent regulation of peptide/H+ co-transport system in the Caco-2 human colon carcinoma cell line. Biochem. J. 299:253–260 (1994).

    Google Scholar 

  61. W. Kramer. Identification of identical polypeptides for cephalosporins and dipeptides in intestinal brush-border membrane vesicles by photoaffinity labeling. Biochimica and Biophysica Acta 905:65–74 (1987).

    Google Scholar 

  62. Y. Miyamoto, Y. G. Thompson, E. F. Howard, V. Ganapathy and F. H. Leibach. Functional expression of the intestinal peptide-protein co-transporter in Xenopus laevis oocytes. J. Biol. Chem. 266:4742–4745 (1991).

    Google Scholar 

  63. D.-M. Oh, G. L. Amidon, and W. Sadée. Functional expression of endogenous dipeptide transporter and exogenous proton/peptide cotransporter in Xenopus oocytes. Arch. Pharm. Res. 18:12–17 (1995).

    Google Scholar 

  64. A. H. Dantzig, J. Hoskins, L. B. Tabas, S. Bright, R. L. Shepard, I. L. Jenkins, D. C. Duckworth, J. R. Sportsman, D. Mackensen, P. R. Rosteck, P. L. Skatrud. Association of intestinal peptide transport with a protein related to the cadherin superfamily. Science 264:430–433 (1994).

    Google Scholar 

  65. D. Gründemann, V. Gorboulev, S. Gambaryan, M. Veyhl and H. Keopsell. Drug excretion mediated by a new prototype of polyspecific transporter. Nature 372:549–552 (1994).

    Google Scholar 

  66. M. H. Wong, P. Oelkers, A. L. Craddock and P. A. Dawson. Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J. Biol. Chem. 269:1340–1347 (1994).

    Google Scholar 

  67. C. Kast, B. Stieger, K. H. Winterhalter and P. J. Meier. Hepatocellular transport of bile acids. J. of Biol. Chem. 269:5179–5186 (1994).

    Google Scholar 

  68. N. F. H. Ho. Utilizing bile acid carrier mechanisms to enhance liver and small intestinal absorption. Ann. N.Y. Acad. Sci. 507:315–329 (1987).

    Google Scholar 

  69. W. Kramer et al. Liver specific drug targeting by coupling to bile acids. J. Biol. Chem. 267:18598–18604 (1992)

    Google Scholar 

  70. C. E. Cass. Nucleoside Transporters. In: Drug Transport in Antimicrobial and Anticancer Chemotherapy. Ed. N.H. Georgupapadakou, Marcel Decker, 1994.

  71. M. M. Gutierrez and K. M. Giacomini. Expression of a human renal sodium nucleoside cotransporter in Xenopus laevis oocytes. Biochem. Pharmacol. 48:2251–2253 (1994).

    Google Scholar 

  72. B. Giros and M. G. Caron. Molecular characterization of the dopamine transporter. TIPS 14:43–49 (1993).

    Google Scholar 

  73. S. Kitayama, S. Shimada, G. R. Uhl. Parkinsonism-inducing neurotoxin MPP+; uptake and toxicity in nonneuronal COS cells expressing dopamine transporter cDNA. Annals of Neurobiology. 32:109–111 (1992).

    Google Scholar 

  74. S. Kitayama, S. Shimada, H. Xu, L. Markham, D. M. Donovan, G. R. Uhl. Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Proc. Natl Acad. Sc. USA 89:7782–7785 (1992).

    Google Scholar 

  75. K. J. Buck, S. G. Amara. Chimeric dopamine-norepinephrine transporters delineate structural domains influencing selectivity for catecholamines and 1-methyl-4-phenylpyridinium. Proc. Natl. Acad. Sci. USA 91:12584–12588 (1994)

    Google Scholar 

  76. E. L. Barker, H. L. Kimmel, R. D. Blakely. Chimeric human and rat serotonin transporters reveal domains involved in recognition of transporter ligands. Mol. Pharmacol. 46:799–807 (1994).

    Google Scholar 

  77. D. M. Dacey. Dopamine-accumulating retinal neurons revealed by in vitro fluorescence display a unique morphology. Science 240:1196–1198 (1988).

    Google Scholar 

  78. M. Gerrard, O. B. Eden and M. V. Merreck. Case reports. Imaging treatments of disseminated neuroblastoma with 131I-meta-iodobenzylaguanidine. Brit. J. of Radiol. 60:393–395 (1987).

    Google Scholar 

  79. A. Alfonso, K. Grundahl, J. S. Duerr, H. P. Han, J. B. Rand. The Caenorhabditis elegans uns-17 gene: a putative vesicular acetylcholine transporter. Science 261:617–620 (1993)

    Google Scholar 

  80. B. A. Bahr, E. D. Clarkson, G. A. Rogers, K. Noremberg and S. M. Parsons. A kinetic and allosteric model for the acetylcholine transporter-vesamicol receptor in synaptic vesicles. Biochem. 31:5752–5762 (1992)

    Google Scholar 

  81. D. J. Vanderbergh, A. M. Persico, G. R. Uhl. A human dopamine transporter cDNA predicts reduced glycosylation, displays a novel repetitive element and provides racially-dimorphic Taq I RFLPs. Mol. Brain Res. 15:161–166 (1992).

    Google Scholar 

  82. S. C. Hyde, P. Emsley, M. J. Hartshorn, M. M. Mimmack, U. Gileadi, S. R. Pearce, M. P. Gallagher, D. R. Gill, R. E. Hubbard, and C. F. Higgins. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature. 346:362–365 (1990)

    Google Scholar 

  83. P. Kaur and B. P. Rosen. Mutagenesis of the C-terminal nucleotide-binding site of an anion-translocating ATPase. J. Biol. Chem. 267:19272–19277 (1992)

    Google Scholar 

  84. N. S. Carter and A. H. Fairlamb. Arsenical-resistant trypanosomes lack an unusual adenosine transporter. Nature 361:173–175 (1993)

    Google Scholar 

  85. M. J. Welsh, M. P. Anderson, D. P. Rich, H. A. Berger, G. M. Denning, L. S. Ostedgaard, D. N. Sheppard, S. H. Cheng, R. J. Gregory, A. E. Smith. Neuron 8:821–829 (1992).

    Google Scholar 

  86. R. Taylor. All dressed up: cystic fibrosis research steps out. J. of NIH Res. 58–59 (1992).

  87. C. Miller. Sickly channels in mild disease. Nature 362:106 (1993).

    Google Scholar 

  88. A. L. Gibson, L. M. Wagner, F. S. Collins and D. L. Oxender. A bacterial system for investigating transport effects of cystic fibrosis-associated mutations. Science 254:109–111 (1991)

    Google Scholar 

  89. S. C. Hyde, D. R. Gill, C. F. Higgins, A. E. Trezise, L. J. MacVinish, A. W. Cuthbert, R. Ratcliff, M. J. Evans and W. H. Colledge. Correction of the ion transport defect in cystic fibrosis transgenic mice by gene therapy. Nature 362:250–255 (1993).92.

    Google Scholar 

  90. K. Danø. Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim. Biophys. Acta 323:466–483 (1973)

    Google Scholar 

  91. R. Juliano and V. Ling. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455:152–159 (1976)

    Google Scholar 

  92. S. P. C. Cole et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258, 1650–1654 (1992).

    CAS  PubMed  Google Scholar 

  93. W. Dalton and B. I. Sikic. The multidrug resistance gene (MDR1) represents a potential target for reversing drug resistance in human malignancies. J. NIH Res. 6:54 (1994)

    Google Scholar 

  94. P. J. Houghton and S. B. Kaye. Multidrug resistance is not an important factor in therapeutic outcome in human malignancies. J. NIH Res. 6:55 (1994).

    Google Scholar 

  95. D. I. Morris, L. M. Greenberger, E. P. Bruggemann, C. Cardarelli, M. Gottesman, I. Pastan, K. Seamon. Localization of the forskolin labeling sites to both halves of p-glycoprotein: similarity of the sites labeled by forskolin and prazosin. Mol. Pharmacol 46:329–337 (1994).

    Google Scholar 

  96. K. Choi, Z. Chen, M. Kriegler and I. B. Roninson. An altered pattern of cross-resistance in multi-drug resistant human cells results from spontaneous mutations in the mdr 1 (p-glycoprotein) gene. Cell 53:519–529 (1988).

    Google Scholar 

  97. B. P. Sorrentino, S. J. Brandt, D. Bodine, M. Gottesman, I. Pastan, A. Cline, A. W. Nienhuis. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science 257:99–103 (1992).

    Google Scholar 

  98. F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman. I. Pastan, and M. C. Willingham. Cellular localization of the multidrug resistance gene product p-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA 84:7735–7738 (1987).

    CAS  PubMed  Google Scholar 

  99. J. Hunter, B. Hirst, N. Simmons. Drug absorption limited by p-glycoprotein-mediated secretory drug transport in human intestinal epithelial Caco-2 cell layers. Pharm. Res. 10:743 (1993).

    Google Scholar 

  100. L. Z. Benet, C.-Y. Wu, M. F. Hebert, and V. J. Wacher. The importance of drug metabolism and antitransport processes: A paradigm shift in oral drug delivery. J. Contr. Rel., in press.

  101. J. J. Neefjes, F. Momburg, G. J. Hammerling. Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science 261:769–771 (1993).

    Google Scholar 

  102. W. K. Suh, M. F. Cohen-Doyle, K. Fruh, K. Wang, P. A. Peterson, D. B. Williams. Interaction of MHC class I molecules with the transporter associated with antigen processing. Science 264:1322–1326 (1994).

    Google Scholar 

  103. H. Momburg, J. Roelse, J. C. Howard, G. W. Butcher, G. J. Hammerling and J. Neefjes. Selectivity of MHC-encoded peptide transporters from human mouse and rat. Nature 367:648–651 (1994).

    Google Scholar 

  104. H. de la Salle, D. Hanau, D. Fricker, A. Urlacher, A. Kelly, J. Salamero, S. H. Powis, L. Donato, H. Bausinger, M. Laforet, M. Jeras, D. Spehner, T. Bieber, A. Falkenrodt, J. P. Cazenave, J. Trowsdale, M. Tongio. Homozygous human TAP peptide transporter mutation in HLA class I deficiency. Science 265:237–241 (1994).

    Google Scholar 

  105. L. E. Rosenberg and E. M. Short. Inherited Defects of Membrane Transport. In K. J. Isselbacher, E. Braunwald, J. D. Wilson, J. M. Martin, A. S. Fauci, D. L. Kasper (eds.) Harrison's Principles of Internal Medicine McGraw-Hill Inc. 13th edition 2125–2131.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadée, W., Drübbisch, V. & Amidon, G.L. Biology of Membrane Transport Proteins. Pharm Res 12, 1823–1837 (1995). https://doi.org/10.1023/A:1016211015926

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016211015926

Navigation