Skip to main content

Drug Transporters

  • Chapter
  • First Online:
ADME Processes in Pharmaceutical Sciences

Abstract

Membrane transporters perform a central function in protecting the body from xenobiotics (either by preventing their absorption, limiting their distribution or promoting their elimination). Transporters can also take part in the traffic and compartmentalization of endogenous compounds. In some particular cases, they may favor drug absorption and/or distribution. Accordingly, they are of major importance from a pharmacological perspective. Transporter protein science is an emerging field, and their identification and characterization continue to evolve, with their medical and pharmaceutical impact being still far from being fully understood. In relation to drug kinetics, two gene families coding for polyspecific transporters are of particular importance: the ATP-binding cassette (ABC) transporters and the solute carrier (SLC) transporters. Both will be discussed in this last chapter of this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Annaert P, Swift D, Lee JK et al (2007) Drug transport in the liver. In You G, Morris ME (eds). John Wiley & Sons, Inc., Hoboken

    Google Scholar 

  • Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–951

    Article  CAS  Google Scholar 

  • Borst P, Evers R, Kool M et al (2000) A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 92:1295–1302

    Article  CAS  Google Scholar 

  • Carneiro A, Blakely R (2006) Serotonin-, protein kinase C-, and Hic-5-associated redistribution of the platelet serotonin transporter. J Biol Chem 281:24769–24780

    Article  CAS  Google Scholar 

  • Choi YH, Yu AM (2014) ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr Pharm Des 20:793–807

    Article  CAS  Google Scholar 

  • Couyoupetrou M, Gantner ME, Di Ianni ME et al (2017) Computer-aided recognition of ABC transporters substrates and its application to the development of new drugs for refractory epilepsy. Mini Rev Med Chem 17:205–215

    Article  CAS  Google Scholar 

  • Daws L, Gould G (2011) Ontogeny and regulation of the serotonin transporter: Providing insights into human disorders. Pharmacol Ther 131:61–79

    Article  CAS  Google Scholar 

  • Di L, Keefer C, Scott DO et al (2012) Mechanistic insights from comparing intrinsic clearance values between human liver microsomes and hepatocytes to guide drug design. Eur J Med Chem 57:441–448

    Article  CAS  Google Scholar 

  • Eiden LE, Weihe E (2011) VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse. Ann N Y Acad Sci 1216:86–98

    Article  CAS  Google Scholar 

  • Erickson JD, Eiden LE (1993) Functional identification and molecular cloning of a human brain vesicle monoamine transporter. J Neurochem 61:2314–2317

    Article  CAS  Google Scholar 

  • Fagiolino P (2017) Farmacocinética y biofarmacia. Parte I: principios fundamentales. UdelaR-FQ; FUNDAQUIM, Montevideo

    Google Scholar 

  • Feldmann M, Koepp M (2016) ABC transporters and drug resistance in patients with epilepsy. Curr Pharm Des 22:5793–5807

    Article  CAS  Google Scholar 

  • Ferman C, Baladi M, McFadden L et al (2015) Regulation of the dopamine and vesicular monoamine transporters: Pharmacological targets and implications for disease. Pharmacol Rev 67:1005–1024

    Article  Google Scholar 

  • Ferreira RJ, Ferreira MJ, dos Santos DJ (2013) Molecular docking characterizes substrate-binding sites and efflux modulation mechanisms within P-glycoprotein. J Chem Inf Model 53:1747–1760

    Article  CAS  Google Scholar 

  • Forrest LR, Rudnick G (2009) The rocking bundle: A mechanism for ion-coupled solute flux by symmetrical transporters. Physiology (Bethesda) 24:377–386

    CAS  Google Scholar 

  • Gether U, Andersen PH, Larsson OM et al (2006) Neurotransmitter transporters: molecular function of important drug targets. Trends Pharmacol Sci 27:375–383

    Article  CAS  Google Scholar 

  • Hagenbuch B, Stieger B (2013) The SLCO (former SLC21) superfamily of transporters. Mol Asp Med 34:396–412

    Article  CAS  Google Scholar 

  • Homolya L, Váradi A, Sarkadi B (2003) Multidrug resistance-associated proteins: Export pumps for conjugates with glutathione, glucuronate or sulfate. Biofactors 17:103–114

    Article  CAS  Google Scholar 

  • Huwyler J, Wright MB, Gutmann H, Drewe J (2006) Induction of cytochrome P450 3A4 and P-glycoprotein by the isoxazolyl-penicillin antibiotic flucloxacillin. Curr Drg Metab 7:119–126

    Article  CAS  Google Scholar 

  • Iannetti P, Spalice A, Parisi P (2005) Calcium-channel blocker verapamil administration in prolonged and refractory status epilepticus. Epilepsia 46:967–969

    Article  Google Scholar 

  • Katoh M, Nakajima M, Yamazaki H et al (2001) Inhibitory effects of CYP3A4 substrates and their metabolites on P-glycoprotein-mediated transport. Eur J Pharm Sci 12:505–513

    Article  CAS  Google Scholar 

  • Kim RB (2002) Drugs as p-glycoprotein substrates, inhibitors, and inducers. Drug Metab Rev 34:47–54

    Article  CAS  Google Scholar 

  • Koepsell H (2013) The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Asp Med 34:413–435

    Article  CAS  Google Scholar 

  • Kristensen A, Andersen J, Jørgensen T et al (2011) SLC6 neurotransmitter transporters: Structure, function, and regulation. Pharmacol Rev 63:585–640

    Article  CAS  Google Scholar 

  • Lawal HO, Krantz DE (2013) SLC18: vesicular neurotransmitter transporters for monoamines and acetylcholine. Mol Asp Med 34:360–372

    Article  CAS  Google Scholar 

  • Lhommé C, Joly F, Walker JL et al (2008) (PSC 833) combined with paclitaxel and carboplatin compared with paclitaxel and carboplatin alone in patients with stage IV or suboptimally debulked stage III epithelial ovarian cancer or primary peritoneal cancer. J Clin Oncol 26:2674–2682

    Article  Google Scholar 

  • Lohr K, Masoud S, Salahpor A et al (2017) Membrane transport as mediators of synaptic dopamine dynamic: implications for disease. Eur J Neurosci 11:3499–3511

    Google Scholar 

  • Luna-Tortós C, Fedrowitz M, Löscher W (2008) Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmcology 55:1364–1375

    Article  Google Scholar 

  • Mao Q, Unadkat JD (2015) Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport--an update. AAPS J 17:65–82

    Article  CAS  Google Scholar 

  • Matheny CJ, Ali RY, Yang X et al (2004) Effect of prototypical inducing agents on P-glycoprotein and CYP3A expression in mouse tissues. Drug Metab Dispos 32:1008–1014

    CAS  PubMed  Google Scholar 

  • Nanayakkara AK, Follit CA, Chen G, Williams NS, Vogel PD, Wise JG (2018) Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Scientific Reports 8 (1)

    Google Scholar 

  • Omiatek DM, Bressler AJ, Cans AS et al (2013) The real catecholamine content of secretory vesicles in the CNS revealed by electrochemical cytometry. Sci Rep 3:1447

    Article  Google Scholar 

  • Pereira CD, Martins F, Wiltfang J et al (2018) ABC transporters are key players in Alzheimer's disease. J Alzheimer Dis 61:463–485

    Google Scholar 

  • Pérez-Tomás R (2006) Multidrug resistance: retrospect and prospects in anti-cancer drug treatment. Curr Med Chem 13:1859–1876

    Article  Google Scholar 

  • Potschka H, Luna-Munguia H (2014) CNS transporters and drug delivery in epilepsy. Curr Pharm Des 20:1534–1542

    Article  CAS  Google Scholar 

  • Qian Y, Melikian HE, Rye DB et al (1995) Identification and characterization of antidepressant-sensitive serotonin transporter proteins using site-specific antibodies. J Neurosci 15:1261–1274

    Article  CAS  Google Scholar 

  • Rees DC, Johnson E, Lewinson O (2009) ABC transporters: The power to change. Nat Rev Mol Cell Biol 10:218–227

    Article  CAS  Google Scholar 

  • Reith ME, Blough BE, Hong WC et al (2015) Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter. Drug Alcohol Depend 147:1–19

    Article  CAS  Google Scholar 

  • Rudnick G, Steiner-Mordoch SS, Fishkes H et al (1990) Energetics of reserpine binding and occlusion by the chromaffin granule biogenic amine transporter. Biochemistry 29:603–608

    Article  CAS  Google Scholar 

  • Rudnick G (1998) Bioenergetics of neurotransmitter transport. J Bioenerg Biomembr 30:173–185

    Article  CAS  Google Scholar 

  • Russel FGM (2010) In: Pang KS, Rodrigues AD, Peter RM (eds) Transporters: importance in drug absorption, distribution, and removal. Springer, New York

    Google Scholar 

  • Safa A (2004) Identification and characterization of the binding sites of P-Glycoprotein for multidrug resistance-related drugs and modulators. Curr Med Chem Anticancer Agents 4 (1):1–17

    Google Scholar 

  • Salphaty L, Benet LZ (1998) Modulation of P-glycoprotein expression by cytochrome P450 3A inducers in male and female rat livers. Biochem Pharmacol 55:387–395

    Article  Google Scholar 

  • Sarkadi B, Ozvegy-Laczka C, Német K et al (2004) BCG2 -- a transporter for all seasons. FEBS Lett 567:116–120

    Article  CAS  Google Scholar 

  • Sarkadi B, Homolya L, Szakács G et al (2006) Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 86:1179–1236

    Article  CAS  Google Scholar 

  • Singh SK, Piscitelli CL, Yamashita A et al (2008) A competitive inhibitor traps LeuT in an open-to-out conformation. Science 322:1655–1661

    Article  CAS  Google Scholar 

  • Sitte H, Freissmuth M (2015) Amphetamines, new psychoactive drugs and the monoamine transporter cycle. Trends Pharmacol Sci 36:41–50

    Article  CAS  Google Scholar 

  • Spiller HA, Hays HL, Aleguas A Jr (2013) Overdose of drugs for attention-deficit hyperactivity disorder: Clinical presentation, mechanisms of toxicity, and management. CNS Drugs 27:531–543

    Article  CAS  Google Scholar 

  • Schlessinger A, Matsson P, Shima JE et al (2010) Comparison of human solute carriers. Protein Sci 19:412–428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schlessinger A, Khuri N, Giacomini KM et al (2013) Molecular modeling and ligand docking for solute carrier (SLC) transporters. Curr Top Med Chem 13:843–856

    Article  CAS  Google Scholar 

  • Subramanian N, Schumann-Gillett A, Mark AE, O’Mara ML (2016) Understanding the accumulation of P-glycoprotein substrates within cells: The effect of cholesterol on membrane partitioning. Biochimica et Biophysica Acta (BBA) - Biomembranes 1858 (4):776–782

    Google Scholar 

  • Sun YL, Patel A, Kumar P et al (2012) Role of ABC transporters in cancer chemotherapy. Chin J Cancer 31:51–57

    Article  Google Scholar 

  • Südhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    Article  Google Scholar 

  • Sulzer D, Maidment NT, Rayport S (1993) Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J Neurochem 60:527–535

    Article  CAS  Google Scholar 

  • Sulzer D, Sonders MS, Poulsen NW et al (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 75:406–433

    Article  CAS  Google Scholar 

  • Taft DR (2009) In: Hacker M, Bachmann K, Messer W (eds) Drug excretion. Academic Press, Burlington

    Chapter  Google Scholar 

  • Ter Beek J, Guskov A, Slotboom DJ (2014) Structural diversity of ABC transporters. J Gen Physiol 143:419–435

    Article  Google Scholar 

  • Tiwari AK, Sodani K, Dai CL et al (2011) Revisiting the ABCs of multidrug resistance in cancer chemotherapy. Curr Pharm Biotechnol 12:570–594

    Article  CAS  Google Scholar 

  • US Food and Drug Administration (2017a) In vitro metabolism and transporter-mediated drug-drug interaction studies. Guidance for industry

    Google Scholar 

  • US Food and Drug Administration (2017b) Clinical drug interaction studies - Study design, data analysis, and clinical implications. Guidance for industry

    Google Scholar 

  • Wacher VJ, Wu C-Y, Benet LZ, (1995) Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: Implications for drug delivery and activity in cancer chemotherapy. Molecular Carcinogenesis 13 (3):129–134

    Google Scholar 

  • Zhou SF (2008) Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab 9:310–322

    Article  CAS  Google Scholar 

Further Reading

  • Transporter science is an expanding field, and this chapter is only intended as an introduction to the topic. The reader may find deeper insight into some excellent volumes that specifically deal with the subject, such as the ones edited by You and Morris (Drug Transporters: Molecular Characterization and Role in Drug Disposition, Second Edition, Wiley, 2014); Pang, Rodrigues, and Peter (Enzyme- and Transporter-based Drug Drug Interactions. Progress and Future Challenges, Springer, 2010); or Ecker and Chiba (Transporters as Drug Carriers. Structure, Function, Substrates, Wiley-VCH, 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Talevi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talevi, A., Bellera, C.L., Pesce, G. (2018). Drug Transporters. In: Talevi, A., Quiroga, P. (eds) ADME Processes in Pharmaceutical Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-99593-9_14

Download citation

Publish with us

Policies and ethics