Skip to main content
Log in

Characterization of the Efflux Transporter(s) Responsible for Restricting Intestinal Mucosa Permeation of the Coumarinic Acid-Based Cyclic Prodrug of the Opioid Peptide DADLE

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To elucidate the efflux transporter(s) responsible for restricting the permeation of a coumarinic acid-based cyclic prodrug of the opioid peptide DADLE (CD) thorough Caco-2 cell monolayers.

Methods. The cellular permeability characteristics of CD were investigated using Caco-2 cells, Madin-Darby canine kidney-wild type II cells (MDCK-WT), MDCK cells transfected with the human MDR1 gene (MDCK-MDR1), and MDCK cells transfected with human MRP2 gene (MDCK-MRP2). These cells were grown as monolayers onto microporous membranes. The disappearance from the donor side and appearance on the receiver side of CD were monitored by HPLC. The substrate activity of CD for P-gp was determined by using GF120918, a known P-gp specific inhibitor. The substrate activity of CD for MRP2 was determined by using cyclosporin A (CsA), a known MRP2 and P-gp inhibitor.

Results. In Caco-2 cells, the ratio of the apparent permeability coefficients (Papp) of CD flux in the basolateral (BL) to apical (AP) direction vs. the flux in the AP-to-BL direction (Papp BL-to-AP/Papp AP-to-BL) was 71. In the presence of GF120918 (2 μM), the Papp BL-to-AP/Papp AP-to-BL ratio was decreased to 16. In the presence of CsA (25 μM), the ratio was decreased to 5.6. In MDCK-WT, MDCK-MDR1, and MDCK-MRP2 cells, the Papp BL-to-AP/Papp AP-to-BL ratios of CD were 13, 35, and 22, respectively. CsA (25 μM) greatly decreased the Papp BL-to-AP/Papp AP-to-BL ratios in MDCK-WT and MDCK-MDR1 cells to 1.5 and 3.2, respectively. However, in MDCK-MRP2 cells, CsA (25 μM) decreased the ratio only to 11. A mixture of GF120918 (2 μM) and CsA (25 μM) decreased the Papp BL-to-AP/Papp AP-to-BL ratios of CD in MDCK-WT, MDCK-MDR1, and MDCK-MRP2 cells to 1.4, 2.7, and 5.4, respectively.

Conclusions. These data suggest that CD is a good substrate for both P-gp and MRP2 and that the restricted permeation of this cyclic prodrug in Caco-2 cells and in the intestinal mucosa is probably due to its substrate activities for both of these efflux transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Bak, O. S. Gudmundsson, G. J. Friis, T. J. Siahaan, and R. T. Borchardt. Acyloxyalkoxy-based cyclic prodrugs of opioid peptides: evaluation of the chemical and enzymatic stability as well as their transport properties across Caco-2 cell monolayers. Pharm. Res. 16:24–29 (1999).

    Google Scholar 

  2. F. Tang and R. T. Borchardt. Characterization of the efflux transporter(s) responsible for restricting intestinal mucosa permeation of an acyloxyalkoxy-based cyclic prodrug of the opioid peptide DADLE. Pharm. Res. 19:780–786 (2002).

    Google Scholar 

  3. U. K. Walle, A. Galijatovic, and T. Walle. Transport of the flavonoid chrysin and its conjugated metabolites by the human intestinal cell line Caco-2. Biochem. Pharmacol. 58:431–438 (1999).

    Google Scholar 

  4. M. Kool, M. de Haas, G. L. Scheffer, R. J. Scheper, M. J. van Eijk, J. A. Juijn, F. Baas, and P. Borst. Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res. 57:3537–3547 (1997).

    Google Scholar 

  5. C. G. Dietrich, D. R. de Waart, R. Ottenhoff, I. G. Schoots, and R. P. Elferink. Increased bioavailability of the food-derived carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in MRP2-deficient rats. Mol. Pharmacol. 59:974–980 (2001).

    Google Scholar 

  6. P. Borst, R. Evers, M. Kool, and J. Wijnholds. The multidrug resistance protein family. Biochim. Biophys. Acta. 1461:347–357 (1999).

    Google Scholar 

  7. O. S. Gudmundsson, G. M. Pauletti, W. Wang, D. Shan, H. Zhang, B. Wang, and R. T. Borchardt. Coumarinic acid-based cyclic prodrugs of opioid peptides that exhibit metabolic stability to peptidases and excellent cellular permeability. Pharm. Res. 16:7–15 (1999).

    Google Scholar 

  8. B. Wang, W. Wang, H. Zhang, D. Shan, and T. D. Smith. Coumarinic-based prodrugs 2. Synthesis and bioreversibility studies of an esterase-sensitive cyclic prodrugs of DADLE, an opioid peptide. Bioorg. Med. Chem. Lett. 6:2823–2826 (1996).

    Google Scholar 

  9. J. Gao, E. D. Hugger, M. S. Beck-Westermeyer, and R. T. Borchardt. In A. Doyle, J. B. Griffiths, and D. J. Newell (eds.), Current Protocols in Pharmacology, Vol. 7.2, John Wiley & Sons, Inc., New York, pp. 1–23, 2000.

    Google Scholar 

  10. F. Tang, H. Kazutoshi, and R. T. Borchardt. Are MDCK cells transfected with the human MDR1 gene a good model of the human intestinal mucosa? Pharm. Res. 19:765–772 (2002).

    Google Scholar 

  11. F. Tang, H. Kazutoshi, and R. T. Borchardt. Are MDCK cells Tang and Borchardt 792 transfected with the human MRP2 gene a good model of the human intestinal mucosa? Pharm. Res. 19:773–779 (2002).

    Google Scholar 

  12. S. P. Letrent, G. M. Pollack, K. R. Brouwer, and K. L. Brouwer. Effects of a potent and specific P-glycoprotein inhibitor on the blood-brain barrier distribution and antinociceptive effect of morphine in the rat. Drug Metab. Dispos. 27:827–834 (1999).

    Google Scholar 

  13. A. J. Smith, U. Mayer, A. H. Schinkel, and P. Borst. Availability of PSC833, a substrate and inhibitor of P-glycoproteins, in various concentrations of serum. J. Natl. Cancer Inst. 90:1161–1166 (1998).

    Google Scholar 

  14. A. T. Nies, T. Cantz, M. Brom, I. Leier, and D. Keppler. Expression of the apical conjugate export pump, Mrp2, in the polarized hepatoma cell line, WIF-B. Hepatology. 28:1332–1340 (1998).

    Google Scholar 

  15. P. Artursson, K. Palm, and K. Luthman. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 46:27–43 (2001).

    Google Scholar 

  16. P. Artursson and R. T. Borchardt. Intestinal drug absorption and metabolism in cell cultures: Caco-2 and beyond. Pharm Res. 14: 1655–1658 (1997).

    Google Scholar 

  17. D. C. Kim, A. W. Harrison, M. J. Ruwart, K. F. Wilkinson, J. F. Fisher, I. J. Hidalgo, and R. T. Borchardt. Evaluation of the bile acid transporter in enhancing intestinal permeability to renin-inhibitory peptides. J. Drug Target. 1:347–359 (1993).

    Google Scholar 

  18. A. H. Dantzig, J. A. Hoskins, L. B. Tabas, S. Bright, R. L. Shepard, I. L. Jenkins, D. C. Duckworth, J. R. Sportsman, D. Mackensen, P. R. Rosteck, and P. L. Skatrud. Association of intestinal peptide transport with a protein related to the cadherin superfamily. Science 264:430–433 (1994).

    Google Scholar 

  19. A. H. Schinkel, J. J. Smit, O. van Tellingen, J. H. Beijnen, E. Wagenaar, L. van Deemter, C. A. Mol, M. A. van der Valk, E. C. Robanus-Maandag, H. P. te Riele, A. J. M. Berns, and P. Borst. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502 (1994).

    Google Scholar 

  20. P. S. Burton, R. A. Conradi, A. R. Hilgers, and N. F. Ho. Evidence for a polarized efflux system for peptides in the apical membrane of Caco-2 cells. Biochem. Biophys. Res. Commun. 190:760–766 (1993).

    Google Scholar 

  21. J. Hunter, M. A. Jepson, T. Tsuruo, N. L. Simmons, and B. H. Hirst. Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. Kinetics of vinblastine secretion and interaction with modulators. J. Biol. Chem. 268:14991–14997 (1993).

    Google Scholar 

  22. P. Anderle, E. Niederer, W. Rubas, C. Hilgendorf, H. Spahn-Langguth, H. Wunderli-Allenspach, H. P. Merkle, and P. Langguth. P-Glycoprotein (P-gp) mediated efflux in Caco-2 cell monolayers: the influence of culturing conditions and drug exposure on P-gp expression levels. J. Pharm. Sci. 87:757–762 (1998).

    Google Scholar 

  23. K. I. Hosoya, K. J. Kim, and V. H. Lee. Age-dependent expression of P-glycoprotein gp170 in Caco-2 cell monolayers. Pharm. Res. 13:885–890 (1996).

    Google Scholar 

  24. J. Gao, O. Murase, R. L. Schowen, J. Aube, and R. T. Borchardt. A functional assay for quantitation of the apparent affinities of ligands of P-glycoprotein in Caco-2 cells. Pharm. Res. 18:171–176 (2001).

    Google Scholar 

  25. R. Evers, M. Kool, L. van Deemter, H. Janssen, J. Calafat, L. C. Oomen, C. C. Paulusma, R. P. Oude Elferink, F. Baas, A. H. Schinkel, and P. Borst. Drug export activity of the human canalicular multispecific organic anion transporter in polarized kidney MDCK cells expressing cMOAT (MRP2) cDNA. J. Clin. Invest. 101:1310–1319 (1998).

    Google Scholar 

  26. R. Evers, N. H. Cnubben, J. Wijnholds, L. van Deemter, P. J. van Bladeren, and P. Borst. Transport of glutathione prostaglandin A conjugates by the multidrug resistance protein 1. FEBS Lett. 419:112–116 (1997).

    Google Scholar 

  27. M. Buchler, J. Konig, M. Brom, J. Kartenbeck, H. Spring, T. Horie, and D. Keppler. cDNA cloning of the hepatocyte canalicular isoform of the multidrug resistance protein, cMrp, reveals a novel conjugate export pump deficient in hyperbilirubinemic mutant rats. J. Biol. Chem. 271:15091–15098 (1996).

    Google Scholar 

  28. P. L. Jansen, W. H. Peters, and W. H. Lamers. Hereditary chronic conjugated hyperbilirubinemia in mutant rats caused by defective hepatic anion transport. Hepatology 5:573–579 (1985).

    Google Scholar 

  29. J. Konig, A. T. Nies, Y. Cui, I. Leier, and D. Keppler. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim. Biophys. Acta. 1461:377–394 (1999).

    Google Scholar 

  30. V. J. Wacher, L. Salphati, and L. Z. Benet. Active secretion and enterocytic drug metabolism barriers to drug absorption. Adv. Drug Deliv. Rev. 46:89–102 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, F., Borchardt, R.T. Characterization of the Efflux Transporter(s) Responsible for Restricting Intestinal Mucosa Permeation of the Coumarinic Acid-Based Cyclic Prodrug of the Opioid Peptide DADLE. Pharm Res 19, 787–793 (2002). https://doi.org/10.1023/A:1016196514217

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016196514217

Navigation