Skip to main content
Log in

Novel Therapeutic Approach: Ligands for PPARγ and Retinoid Receptors Induce Apoptosis in bcl-2-positive Human Breast Cancer Cells

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Effective treatment of tumors is often associated with activation of the endogenous apoptosis pathways. We have studied eight breast cancer cell lines (MCF-7, BT20, BT474, MDA-MB-231, MDA-MB-436, SKBR3, T-47D, ZR-75-1) possessing a variety of genetic defects. The clonogenic growth of breast cancer cell lines was inhibited by a ligand for PPARγ (troglitazone, TGZ) combined with a ligand for either retinoid X receptor (RXR) (LG10069) (4/8 cell lines), RAR (ATRA) (5/8 cell lines) or RAR/RXR and RXR/RXR (9-cis-RA) (5/8 cell lines) independent of their expression of bcl-2, bag-1, ERα, and p53. The cell lines (MCF-7, T-47D, ZR-75-1), which expressed both BRCA1 and p27, were extremely sensitive to the inhibitory effect of the combination of TGZ and either ATRA or 9-cis-RA (ED90, 2-5 × 10−11 M). However, only MCF-7, MDA-MB-231, and ZR-75-1 cells, which expressed a high level of bcl-2 protein, underwent apoptosis when exposed to the combination of TGZ and either ATRA or 9-cis-RA. Importantly, this effect was independent of expression levels of p53, ERα, HER-2/neu, bag-1, and BRCA1. Therefore, the combination of ligands for PPARγ and retinoid receptors may have a therapeutic role for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warrell Jr RP, Frankel SR, Miller Jr WH, Scheinberg DA, Itri LM, Hittelman WN, Vyas R, Andreeff M, Tafuri A, Jakubowski A: Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N Engl J Med 324: 1385–1393, 1991.

    PubMed  Google Scholar 

  2. Chen ZX, Xue YQ, Zhang R, Tao RF, Xia XM, Li C, Wang W, Zu WY, Yao XZ, Ling BJ: A clinical and experimental study on all-trans retinoic acid-treated acute promyelocytic leukemia patients. Blood 78: 1413–1419, 1991

    PubMed  Google Scholar 

  3. Degos L, Chomienne C, Daniel MT, Berger R, Dombret H, Fenaux P, Castaigne S: Treatment of first relapse of acute promyelocytic leukemia with all-trans retinoic acid. Lancet 336: 1440–1441, 1990

    Google Scholar 

  4. Hong WK, Lippman SM, Itri LM, Karp DD, Lee JS, Byers RM, Schantz SP, Kramer AM, Lotan R, Peters LJ: Prevention of second primary tumors with isotretinoin in squamous-cell carcinoma of the head and neck. N Engl J Med 323: 795–801, 1990

    PubMed  Google Scholar 

  5. Lippman SM, Kavanagh JJ, Paredes-Espinoza M, Delgadillo-Madrueno F, Paredes-Casillas P, Hong WK, Holdener E, Krakoff I: 13-cis-retinoic acid plus interferon alpha-2a: highly active systemic therapy for squamous cell carcinoma of the cervix. J Natl Cancer Inst 84: 241–245, 1992

    PubMed  Google Scholar 

  6. Tontonoz P, Hu E, Spiegelman BM:Stimulation of adipo-genesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79: 1147–1156, 1994

    PubMed  Google Scholar 

  7. Elstner E, Müller C, Koshizuka K, Williamson EA, Park D, Asou H, Shintaku P, Said JW, Heber D, Koeffler HP: Ligands for peroxisome proliferator-activated receptor ã and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc Natl Acad Sci USA 95: 8806–8811, 1998

    PubMed  Google Scholar 

  8. Willett WC, Hunter DJ, Stampfer MJ, Colditz G, Manson JE, Spiegelman B, Rosner B, Hennekens CH, Speizer FE: Dietary fat and fiber in relation to risk of breast cancer. An 8-year follow-up. JAMA 268: 2037–2044, 1992

    PubMed  Google Scholar 

  9. Lu J, Jiang C, Fontaine S, Thompson HJ: ras may mediate mammary cancer promotion by high fat. Nutr Cancer 23: 283–290, 1995

    PubMed  Google Scholar 

  10. Pizer ES, Jackisch C, Wood FD, Pasternack GR, Davidson NE, Kuhajda FP: Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells. Cancer Res 56: 2745–2747, 1996

    PubMed  Google Scholar 

  11. Clay CE, Namen AM, Atsumi G, Willingham MC, High KP, Kute TE, Trimboli AJ, Fonteh AN, Dawson PA, Chilton FH: Influence of J series prostaglandins on apoptosis and tumori-genesis of breast cancer cells. Carcinogenesis 20: 1905–1911, 1999

    PubMed  Google Scholar 

  12. Suh N, Wang Y, Williams CR, Risingsong R, Gilmer T, Willson TM, Sporn MB: A new ligand for the peroxi-some proliferator-activated receptor-gamma (PPAR-gamma), GM7845, inhibits rat mammary carcinogenesis. Cancer Res 59: 5671–5673, 1999

    PubMed  Google Scholar 

  13. Mehta RG, Williamson E, Patel MK, Koeffler HP: A ligand of peroxisome proliferator-activated receptor gamma, retin-oids, and prevention of preneoplastic mammary lesions. J Natl Cancer Inst 92: 418–423, 2000

    PubMed  Google Scholar 

  14. Elstner E, Williamson E, Becker M, von Deimling A, Possinger K, Koeffler HP: Ligands for PPAR-gamma and RAR induce apoptosis in bcl2 positive human glioblastoma cells. 91st Annual Meeting, April 1–5, 2000, San Francisco, USA, Proc AACR 41: Abstract 4697, 2000

    Google Scholar 

  15. Kubota T, Koshizuka K, Williamson EA, Asou H, Said JW, Holden S, Miyoshi I, Koeffler HP: Ligand for peroxisome proliferator-activated receptor ã (troglitazone) has potent an-titumor effect against human prostate cancer both in vitro and in vivo. Cancer Res 58: 3344–3352, 1998

    PubMed  Google Scholar 

  16. Takahashi N, Okumura T, Motomura W, Fujimoto Y, Kawabata I, Kohgo Y: Activation of PPARgamma inhibits cell growth and induces apoptosis in human gastric cancer cells.FEBS Lett 455: 135–139, 1999

    PubMed  Google Scholar 

  17. Chang TH, Szabo E: Induction of differentiation and apoptosis by ligands of peroxisome proliferator-activated receptor ã in non-small cell lung cancer. Cancer Res 60: 1129–1138, 2000

    PubMed  Google Scholar 

  18. Sarraf P, Mueller E, Jones D, King FJ, DeAngelo DJ, Partridge JB, Holden SA, Chen LB, Singer S, Fletcher C, Spiegel-man BM: Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nature Med 4: 1046–1052, 1998

    PubMed  Google Scholar 

  19. Kitamura S, Miyazaki Y, Shinomura Y, Kondo S, Kanayama S, Matsuzawa Y: Peroxisome proliferator-activated receptor gamma induces growth arrest and differentiation markers of human colon cancer cells. Jpn J Cancer Res 90: 75–80, 1999

    PubMed  Google Scholar 

  20. Asou H, Verbeek W, Williamson E, Elstner E, Kubota T, Kamada N, Koeffler HP: Growth inhibition of myeloid leuk-emia cells by troglitazone, a ligand for peroxisome proliferator activated receptor ã, and retinoids. Int J Oncol 15: 1027–1031, 1999

    PubMed  Google Scholar 

  21. Hirase N, Yanase T, Mu Y, Muta K, Umemura T, Takayanagi R, Nawata H: Thiazolidinedione induces apoptosis and mono-cytic differentiation in the promyelocytic leukemia cell line HL60. Oncology 57 (suppl 2): 17–26, 1999

    Google Scholar 

  22. Elstner E, Linker-Israeli M, Umiel T, Le J, Grillier I, Said J, Shintaku IP, Krajewski S, Reed JC, Binderup L, Koeffler HP: Combination of a potent 20-epi-vitamin D3 analogue (KH1060) with 9-cis retinoic acid irreversibly inhibits clonal growth, decreases bcl-2 expression and induces apoptosis in HL-60 leukemic cells. Cancer Res 56: 3570–3576, 1996

    PubMed  Google Scholar 

  23. Elbert A, Chen Y, Cullinan CA, Hayes N, Leibowitz MD, Moller DE, Berger J: Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma-1 and gamma-2. Biochem Biophys Res Commun 224: 431–437, 1996

    PubMed  Google Scholar 

  24. Elstner E, Linker-Israeli M, Le J, Umiel T, Michl P, Said JW, Binderup L, Reed JC, Koeffler HP: Synergistic decrease of clonal proliferation, induction of differentiation, and apoptosis of acute promyelocytic leukemia cells after combined treat-ment with novel 20-epi vitamin D3 analogs and 9-cis retinoic acid. J Clin Invest 99: 349–360, 1997

    PubMed  Google Scholar 

  25. Elstner E, Linker-Israeli M, Said J, Umiel T, de Vos S, Shin-taku IP, Heber D, Binderup L, Uskokovic M, Koeffler HP: 20-epi-vitamin D3 analogues: a novel class of potent inhibitors of proliferation and inducer of differentiation of human breast cancer cell lines. Cancer Res 55: 2822–2830, 1995

    PubMed  Google Scholar 

  26. Bishop-Bailey D, Hla T: Endothelial cell apoptosis induced by the peroxisome proliferator-activated receptor (PPAR) ligand 15-deoxy-12,14-prostaglandin J2. J Biol Chem 274: 17042–17048, 1999

    PubMed  Google Scholar 

  27. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK: The peroxisome proliferator-activated receptor-ã is a negative reg-ulator of macrophage activation. Nature (London) 391: 79–82, 1998

    PubMed  Google Scholar 

  28. Dawson MI, Chao WR, Pine P, Jong L, Hobbs PD, Rudd CK, Quick TC, Niles RM, Zhang XK, Lombardo A: Cor-relation of retinoid binding affinity to retinoic acid receptor alpha with retinoid inhibition of growth of estrogen receptor-positive MCF-7 mammary carcinoma cells. Cancer Res 55: 4446–4451, 1995

    PubMed  Google Scholar 

  29. Fontana JA, Miksis G, Miranda DM, Durham JP: Inhibition of human mammary carcinoma cell proliferation by retinoids and intracellular cAMP-elevating compounds. J Natl Cancer Inst 78: 1107–1112, 1987.

    PubMed  Google Scholar 

  30. Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM, Thaller C: 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68: 397–406, 1992

    PubMed  Google Scholar 

  31. Chinetti G, Griglio S, Antonucci M, Torra IP, Delerive P, Majd Z, Fruchart JC, Chapman J, Najib J, Staels B: Activation of proliferator-activated receptors á and ã induces apoptosis of human monocyte-derived macrophages. J Biol Chem 273: 25573–25580, 1998

    PubMed  Google Scholar 

  32. Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, Harper JW, Elledge SJ: p57Kip2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev 9: 650–662, 1995

    PubMed  Google Scholar 

  33. Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massague J: Cloning of p27kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extra-cellular antimitogenic signals. Cell 78: 59–66, 1994

    Article  Google Scholar 

  34. Hirama T, Koeffler HP: Role of the cyclin-dependent kinase inhibitors in the development of cancer. Blood 86: 841–854, 1995

    PubMed  Google Scholar 

  35. Catzavelos C, Bhattacharya N, Ung YC, Wilson JA, Roncari L, Sandhu C, Shaw P, Yeger H, Morava-Protzner I, Kapusta L, Franssen E, Pritchard KI, Slingerland JM: Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic im-plications in primary breast cancer. Nature Med 3: 227–230, 1997

    PubMed  Google Scholar 

  36. Porter PL, Malone KE, Heagerty PJ, Alexander GM, Gatti LA, Firpo EJ, Daling JR, Roberts JM: Expression of cell-cycle regulators p27Kip1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nature Med 3: 222–225, 1997

    Article  PubMed  Google Scholar 

  37. Tan P, Cady B, Wanner M, Worland P, Cukor B, Magi-Galluzzi C, Lavin P, Draetta G, Pagano M, Loda M: The cell cycle inhibitor p27 is an independent prognostic marker in small (T1a,b) invasive breast carcinomas. Cancer Res 57: 1259–1263, 1997

    PubMed  Google Scholar 

  38. Thompson ME, Jensen RA, Obermiller PS, Page DL, Holt JT: Decrease expression of BRCA1 accelerates growth and is of-ten present during sporadic breast cancer progression. Nature Genet 9: 444–450, 1995

    PubMed  Google Scholar 

  39. Holt JT, Thompson ME, Szabo C, Robinson-Benion C, Arteaga C, King MC, Jensen RA: Growth retardation and tumor inhibition by BRCA1. Nature Genet 12: 298–302, 1996

    PubMed  Google Scholar 

  40. Ford D, Easton DF, Bishop DT, Narod SA, Goldgar DE: Risk of cancer in BRCA1-mutation carriers, Breast Cancer Linkage Consortium. Lancet 343: 692–695, 1994

    PubMed  Google Scholar 

  41. Easton DF, Ford D, Bishop DT:Breast and ovarian cancer in-cidence in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Am J Hum Genet 56: 265–271, 1995

    PubMed  Google Scholar 

  42. Struewing JP, Hartge P, Wacholder S, Baker SM, Berlin M, McAdams M, Timmerman MM, Brody LC, Tucker MA: The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med 336: 1401–1408, 1997

    PubMed  Google Scholar 

  43. Robson M, Rajan P, Rosen PP, Gilewski T, Hirschaut Y, Pressman P, Haas B, Norton G, Offit K: BRCA-associated breast cancer: absence of a characteristic immunophenotype. Cancer Res 58: 1839–1842, 1998

    PubMed  Google Scholar 

  44. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ulrich A, McGuire WL: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182, 1987

    PubMed  Google Scholar 

  45. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A: Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707–712, 1989

    PubMed  Google Scholar 

  46. Kuiper GG, Brinkmann AO: Steroid hormone receptor phos-phorylation: is there a physiologic role? Mol Cell Endocrinol 100: 103–107, 1994

    PubMed  Google Scholar 

  47. Reddy KB, Mangold GL, Tandon AK, Yoneda T, Mundy GR, Zilberstein A, Osborne CK: Inhibition of breast cancer cell growth in vitro by tyrosine kinase inhibitor. Cancer Res 52: 3636–3641, 1992

    PubMed  Google Scholar 

  48. Read LD, Keith Jr D, Slamon DJ, Katzenellenbogen BS: Hormonal modulation of HER-2/neu protooncogene messen-ger ribonucleic acid and p185 protein expression in human breast cancer cell lines. Cancer Res 50: 3947–3951, 1990

    PubMed  Google Scholar 

  49. Pietras RJ, Arboleda J, Reese DM, Wongvipat N, Pegram MD, Ramos L, Gorman CM, Parker MG, Sliwkowski MX, Slamon DJ: HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 10: 2435–2446, 1995

    PubMed  Google Scholar 

  50. Liu Y, El-Ashry D, Chen D, Ding IYF, Kern FG: MCFbreast cancer cells overexpressing transfected c-erbB-2 have an in vitro growth advantage in estrogen-depleted conditions and a reduced estrogen-dependence and tamoxifen-sensitivity in vivo. Breast Cancer Res Treat 34: 97–117, 1995

    PubMed  Google Scholar 

  51. Benz CC, Scott GK, Sarup JC, Johnson RM, Tripathy D, Coronado E, Shepard M, Osborne CK: Estrogen-dependent, tamoxifen-resistent tumorigenic growth of MCF-7 cells trans-fected with HER2/neu. Breast Cancer Res Treat 24: 85–95, 1992

    Google Scholar 

  52. Wright C, Nicholson S, Angus B, Sainsbury JR, Farndon J, Cairns J, Harris AL, Horne CH: Relationship between c-erbB-2 protein product expression and response to endocrine therapy in advanced breast cancer. Br J Cancer 65: 118–121, 1992

    PubMed  Google Scholar 

  53. Elledge RM, Green S, Ciocca D, Pugh R, Allred C, Clark GM, Hill J, Ravdin P, O'Sullivan J, Martino S, Osborne CK: HER-2 expression and response to tamoxifen in estrogen receptor-positive breast cancer: a Southwest Oncology Group Study. Clin Cancer Res 4: 7–12, 1998

    PubMed  Google Scholar 

  54. Yamauchi H, O'Neill A, Gelman R, Carney W, Tenney DY, Hösch S, Hayes DF: Prediction of response to antiestrogen therapy in advanced breast cancer patients by pretreatment circulating levels of extracellular domain of the HER-2/c-neu protein. J Clin Oncol 15: 2518–2525, 1997

    PubMed  Google Scholar 

  55. De Placido S, Carlomango C, De Laurentiis M, Bianco AR: c-erbB2 expression predicts tamoxifen efficacy in breast cancer patients. Breast Cancer Res Treat 52: 55–64, 1998

    PubMed  Google Scholar 

  56. Duenas-Gonzalez A, Abad-Hernandez MM, Cruz-Hernandez JJ, Gonzalez-Sarmiento R: Analysis of bcl-2 in sporadic breast carcinoma. Cancer 80: 2100–2108, 1997

    PubMed  Google Scholar 

  57. Siziopikou KP, Prioleau JE, Harris JR, Schnitt SJ: Bcl-2 ex-pression in the spectrum of preinvasive breast lesions. Cancer 77: 499–506, 1996

    PubMed  Google Scholar 

  58. Leek RD, Kaklamanis L, Pezzella F, Gatter KC, Harris AL: Bcl-2 in normal human breast and carcinoma, association with oestrogen receptor-positive, epidermal growth factor receptor-negative tumours and in situ cancer. Br J Cancer 69: 135–139, 1994

    PubMed  Google Scholar 

  59. Kobayashi S, Iwase H, Ito Y, Yamashita H, Iwata H, Yamashita T, Ito K, Toyama T, Nakamura T, Masaoka A: Clinical significance of bcl-2 gene expression in human breast cancer tissues. Breast Cancer Res Treat 42: 173–181, 1997

    PubMed  Google Scholar 

  60. Sierra A, Lloveras B, Castellsague X, Moreno L, Garcia-Ramirez M, Fabra A: Bcl-2 expression is associated with lymph node metastasis in human ductal breast carcinoma. Int J Cancer 60: 54–60, 1995

    PubMed  Google Scholar 

  61. van Slooten HJ, van De Vijver MJ, van de Velde CJ, van Dierendonck JH: Loss of Bcl-2 in invasive breast cancer is associated with high rate of cell death, but also with increased proliferative activity. Br J Cancer 77: 789–796, 1998

    PubMed  Google Scholar 

  62. Joensuu H, Pylkkanen L, Toikkanen S: Bcl-2 protein expres-sion and long-term survival in breast cancer. Am J Pathol 145: 1191–1198, 1994

    PubMed  Google Scholar 

  63. Gee JM, Robertson JF, Ellis IO, Willsher P, McClelland RA, Hoyle HB, Kyme SR, Finlay P, Blamey RW, Nicholson RI: Immunocytochemical localization of BCL-2 protein in human breast cancers and its relationship to a series of prognostic markers and response to endocrine therapy. Int J Cancer 59: 619–628, 1994

    PubMed  Google Scholar 

  64. Keen JC, Dixon JM, Miller EP, Cameron DA, Chetty U, Hanby A, Bellamy C, Miller WR: The expression of Ki-S1 and BCL-2 and the response to primary tamoxifen therapy in elderly patients with breast cancer. Breast Cancer Res Treat 44: 123–133, 1997

    PubMed  Google Scholar 

  65. Gasparini G, Barbareschi M, Doglioni C, Palma PD, Mauri FA, Boracchi P, Bevilacqua P, Caffo O, Morelli L, Verderio P et al.: Expression of bcl-2 protein predicts efficacy of adjuvant treatment in operable node-positive breast cancer. Clin Cancer Res 1: 189–198, 1995

    PubMed  Google Scholar 

  66. Elledge RM, Green S, Howes L, Clark GM, Berado M, Allred DC, Pugh R, Ciocca D, Ravdin P, O'Sullivan J, Rivkin S, Martino S, Osborne CK: Bcl-2, p53, and response to tamox-ifen in estrogen receptor-positive metastatic breast cancer: a Southwest Oncology Group Study. J Clin Oncol 15: 1916–1922, 1997

    PubMed  Google Scholar 

  67. Ngan BY, Chen-Levy Z, Weiss LM, Warnke RA, Cleary ML: Expression in non-Hodgkin's lymphoma of the bcl-2 protein associated with the t(14;18) chromosomal translocation. N Engl J Med 318: 1638–1644, 1988

    PubMed  Google Scholar 

  68. Zhang GJ, Kimijima I, Tsuchiya A, Abe R: The role of bcl2 expression in breast carcinomas. Oncol Rep 5: 1211–1216, 1998

    PubMed  Google Scholar 

  69. Takayama S, Sato T, Krajewski S, Kochel K, Irie S, Millan JA, Reed JC: Cloning and functional analysis of BAG-1: a novel Bcl-2 binding protein with anti-cell death activity. Cell 80: 279–284, 1995

    PubMed  Google Scholar 

  70. Zeiner M, Gehring U: A protein that interacts with members of the nuclear hormone receptor family: identification and cDNA cloning. Proc Natl Acad Sci USA 92: 11465–11469, 1995

    PubMed  Google Scholar 

  71. Froesch BA, Takayama S, Reed JC: BAG-1L protein enhances androgen receptor function. J Biol Chem 273: 11660–11666, 1998

    PubMed  Google Scholar 

  72. Kullmann M, Schneikert J, Moll J, Heck S, Zeiner M, Gehring U, Cato AC: RAP46 is a negative regulator of glu-cocorticoid receptor action and hormone-induced apoptosis. J Biol Chem 273: 14620–14625, 1998

    PubMed  Google Scholar 

  73. Zapata JM, Krajewska M, Krajewski S, Huang RP, Takayama S, Wang HG, Adamson E, Reed JC: Expression of multiple apoptosis-regulatory genes in human breast cancer cell lines and primary tumors. Breast Cancer Res Treat 47: 129–140, 1998

    PubMed  Google Scholar 

  74. Yang X, Hao Y, Ding Z, Pater A, Tang SC: Differential expression of antiapoptotic gene BAG-1 in human breast nor-mal and cancer cell lines and tissues. Clin Cancer Res 5: 1816–1822, 1999

    PubMed  Google Scholar 

  75. Tumer BC, Krajewski S, Krajewska M, Carter D, Haffi BG, Reed JC: Bag-1: a novel biomarker predicting long-term sur-vival in early stage breast cancer. Breast Cancer Res Treat Abstract 6, 1999

  76. Crawford LV, Pim DC, Lamb P: The cellular protein p53 in human tumours. Mol Biol Med 2: 261–272, 1984

    PubMed  Google Scholar 

  77. Cattoretti G, Rilke F, Andreola S, D'amato L, Delia D: P53 in breast cancer. Int J Cancer 41: 178–183, 1988

    PubMed  Google Scholar 

  78. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC: Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9: 1799–1805, 1994

    PubMed  Google Scholar 

  79. Haldar S, Negrini M, Monne M, Sabbioni S, Croce CM: Down-regulation of bcl-2 by p53 in breast cancer cells. Cancer Res 54: 2095–2097, 1994

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elstner, E., Williamson, E., Zang, C. et al. Novel Therapeutic Approach: Ligands for PPARγ and Retinoid Receptors Induce Apoptosis in bcl-2-positive Human Breast Cancer Cells. Breast Cancer Res Treat 74, 155–165 (2002). https://doi.org/10.1023/A:1016114026769

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016114026769

Navigation