Skip to main content
Log in

Equilibrium of an Inverted Mathematical Double-Link Pendulum with a Follower Force

  • Published:
International Applied Mechanics Aims and scope

Abstract

A discrete model of an elastic pendulum with a follower force is studied. This model is an inverted mathematical two-link pendulum with viscoelastic hinges. It is shown that divergent bifurcations are possible for some absolute values of the follower force and the stiffness of the restraint of the pendulum's upper end. As a result, the vertical position of the equilibrium becomes unstable and two new nonvertical stable equilibrium states (fork bifurcation) occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. A. Agafonov, “On stability and self-oscillations of a double pendulum with elastic elements under a follower force,” Izv. RAN, Mekh. Tverd. Tela, No. 5, 185–190 (1992).

    Google Scholar 

  2. S. A. Agafonov “Stabilization of equilibrium of the Ziegler pendulum through parametric excitation,” Izv. RAN, Mekh.Tverd. Tela, No. 6, 36–40 (1997).

    Google Scholar 

  3. V. I. Arnol'd, V. S. Afraimovich, Yu. S. Il'yashenko, and L. P. Shil'nikov, “Bifurcation theory,” in: Advances in Science and Engineering, Current Problems of Mathematics. Dynamic Systems [in Russian], Vol. 5, VINITI, Moscow (1986), pp. 5–218.

    Google Scholar 

  4. V. G. Verbitskii and L. G. Lobas, “Real bifurcations of double-link rolling systems,” Prikl. Mat. Mekh., 60, No. 3, 418–425 (1996).

    Google Scholar 

  5. V. G. Verbitskii and L. G. Lobas, “Real bifurcations of dynamic systems with simple symmetry upon variation in the control parameters,” Probl. Upravl. Inform., No. 6, 47–62 (1995).

    Google Scholar 

  6. N. I. Zhinzher, “Influence of dissipative forces with incomplete dissipation on the stability of elastic systems,” Izv. RAN, Mekh. Tverd. Tela, No. 1, 149–155 (1994).

    Google Scholar 

  7. L. G. Lobas, “Nonlinear stability and pitchfork bifurcations in dynamic systems with simple symmetry,” Prikl. Mat.Mekh., 60, No. 2, 327–332 (1996).

    Google Scholar 

  8. Ya. G. Panovko and S. V. Sorokin, “On quasistability of viscoelastic systems with follower forces,” Izv. AN SSSR, Mekh.Tverd. Tela, No. 5, 135–139 (1987).

    Google Scholar 

  9. A. P. Seiranyan, “On the stabilization of nonconservative systems by dissipative forces and on the uncertainty of the critical load,” Dokl. RAN, 348, No. 3, 323–326 (1996).

    Google Scholar 

  10. I. G. Boruk and L. G. Lobas, “On the motion of a reversible double simple pendulum with tracking force,” Int. Appl.Mech., 35, No. 7, 745–750 (1999).

    Google Scholar 

  11. P. Hagedom, “On the destabilizing effect of non-linear damping in non-conservative systems with follower forces,” Int.J. Non-Linear Mech., 5, No. 2, 341–358 (1970).

    Google Scholar 

  12. G. Hermann and I.-C. Jong, “On the destabilizing effect of damping in nonconservative elastic systems,” Trans. ASME, Ser. E, J. Appl. Mech., E32, No. 3, 592–597 (1965).

    Google Scholar 

  13. E. Lindtner, A. Steindl, and H. Troger, “Stabilitätsverlust der gestreckten Lage eines raumlichen Doppelpendels mit elastischer Endlagerung unter einer Volgelast,” Z. angew. Math. Mech., 67, No. 4, 105–107 (1987).

    Google Scholar 

  14. L. G. Lobas, “Nonlinear stability and triple-equilibrium bifurcations in finite-dimensional dynamical systems with symmetry,” Eng. Simul., 14, No. 5, 713–725 (1997).

    Google Scholar 

  15. L. G. Lobas, “Bifurcations of steady states and periodic motions of finite-dimensional dynamical systems with simple symmetry,” Int. Appl. Mech., 34, No 1, 1–24 (1998).

    Google Scholar 

  16. L. G. Lobas, “The dynamics of finite-dimensional systems under nonconservative position forces,” Int. Appl. Mech., 37, No. 1, 38–65 (2001).

    Google Scholar 

  17. A. Pflüger, Stabilitätsprobleme der Elastostatik, Springer, Berlin–Göttingen–Heidelberg (1950).

    Google Scholar 

  18. R. H. Plaut, “A new destabilization phenomenon in nonconservative systems,” Z. Angew. Math. Mech., 51, No. 4, 319–321 (1971).

    Google Scholar 

  19. R. Scheidl, H. Troger, and K. Zeman, “Coupled flutter and divergence bifurcation of a double pendulum,” Int. J.Non-Linear Mech., 19, No. 2, 163–176 (1984).

    Google Scholar 

  20. A. Stribersky and H. Troger, “Globales Verzweigungsverhalten am Beispiel eines langselastischen Doppelpendels unter Volgelast,” Z. angew. Math. Mech., 68, No. 4, 126–128 (1988).

    Google Scholar 

  21. H. Troger and A. Steindl, Nonlinear Stability and Bifurcation Theory, Springer-Verlag, Vienna–New York (1991).

    Google Scholar 

  22. H. Troger and K. Zeman, “DeZur korrekten Modellbildung in der Dynamik diskreter Systeme,” Ingenieur-Archiv., 51, No. 1/2, 31–43 (1981).

    Google Scholar 

  23. H. Ziegler, “DeDie Stabilitätskriterien der Elastomechanik,” Ingenieur-Archiv., 20, No. 1, 49–56 (1952).

    Google Scholar 

  24. H. Ziegler, “Linear elastic stability,” Z. angew. Math. Phys., 4, No. 2, 89–121; No. 3, 167–185 (1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobas, L.G., Patricio, L.D. & Boruk, I.G. Equilibrium of an Inverted Mathematical Double-Link Pendulum with a Follower Force. International Applied Mechanics 38, 372–376 (2002). https://doi.org/10.1023/A:1016098615226

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016098615226

Keywords

Navigation