Skip to main content
Log in

Genetic variation and phylogenetic relationships in East and South Asian melons, Cucumis melo L., based on the analysis of five isozymes

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Genetic structure and phylogenetic relationships in East and South Asian melons were analyzed, based on the geographical variation of five isozymes. The analysis of Indian melon accessions showed a continuous variation in seed length, ranging from 4 to 13 mm. Most of the East Asian melons, vars. makuwa and conomon, were classified as the small seed type with seed length shorter than 9 mm. The frequency of the small seed type increased from the west to the east in India. Allelic variation was detected at a total of nine loci of five isozymes among 114 melon accessions. Gene diversity calculated for the nine loci indicated that Indian melon was rich in genetic variation, which decreased from India towards the east. Clear geographical variation was detected in two enzymes, APS and6-PGDH. Pgd-1 1 and Ap-3 1 were frequent in India and Myanmar, while most of the melons in Laos, China, Korea and Japan carried Pgd-1 3 and Ap-3 3, except var. inodorusin China. Among the latter two alleles, the frequency of Ap-3 3 was more than 50% in the small seed type in north and east India, indicating that vars. makuwa and conomon were related to the small seed type in these areas. It was also suggested that the small seed type with wet tolerance originated in central India and was selected under wet condition in the east.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bates, D.M. & R.W. Robinson, 1995. Cucumber, melons and watermelons, Cucumis and Citrullus (Cucurbitaceae). In: J. Smartt & N.W. Simmonds (Eds.), Evolution of Crop Plants, pp. 89–111. John Wiley & Sons, New York NY, 10158.

    Google Scholar 

  • Benito, C. & Perez de la Vega, 1979. The chromosomal location of peroxidase isozyme of the wheat kernel. Theor Appl Genet 55: 73–76.

    Article  CAS  Google Scholar 

  • Dane, F., 1983. Cucurbits. In: S.D. Tanksley & T.J. Orton (Eds.), Isozyme in Plant Genetics and Breeding, Part B. pp. 369–390. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Esquinas, J.T., 1981. Alloenzyme variation and relationships among Spanish land-races of Cucumis melo L. Kulturpflanze 24: 337–352.

    Article  Google Scholar 

  • Fujishita, N. & Y. Oda, 1965. Melons from Pakistan, Afghanistan and Iran. KUSE to the Karakoram and Hindukush. Kyoto Univ 1: 231–256.

    Google Scholar 

  • Fujishita, N., 1983. Genetic diversity and phylogenetic differentiation in melon. Current Topics Plant Breed 24: 3–21. (Japanese).

    Google Scholar 

  • Fujishita, N., 1992. Melons in the ancient Japan, revealed by excavated melon seeds. Archaeol J 354: 7–13. (Japanese).

    Google Scholar 

  • Fujishita, N., H. Furukawa & S. Morii, 1993. Distribution of three genotypes for bitterness of F1 immature fruit in Cucumis melo. Japan J Breed 43 (Suppl. 2): 206. (Japanese).

    Google Scholar 

  • Hatakeyama, H., 1964. Climate in Asia. Kokin Shoin, Tokyo. (Japanese).

    Google Scholar 

  • Jeffrey, C., 1980. A review of the Cucurbitaceae. Bot J Linnean Soc 81: 233–247.

    Google Scholar 

  • Kato, K., Y. Akashi, A. Okamoto, S. Kadota & M. Masuda, 1998. Isozyme polymorphism in melon (Cucumis melo L.), and application to seed purity test of F1 cultivars. Breed Sci 48: 237–242.

    CAS  Google Scholar 

  • Kishaba, A.N., G.W. Bohn & H.H. Toba, 1971. Resistance to Aphis gossypii in muskmelon. J Econ Entomol 64: 935–937.

    Google Scholar 

  • Kitamura, S., 1950. Notes on Cucumis of Far East. Acta Phytotax et Geobot 14: 41–44.

    Google Scholar 

  • Kitamura, S., 1951. The origin of the cultivated plants of China. Acta Phytotax Geobot 14: 81–86.

    Google Scholar 

  • Makino, T., 1928. A contribution to the knowledge of the flora of Japan. J Jap Bot 8: 32.

    Google Scholar 

  • Mallick, M.F.R. & M. Masui, 1986. Origin, distribution and taxonomy of melons. Sci Hort 28: 251–261.

    Article  Google Scholar 

  • Morii, S., N. Fujishita & Y. Momodani, 1980. Phylogenetic analysis in C. melo based on isozyme polymorphism, with special reference to the relationship between weed melon and cultivated melon. J Japan Soc Hort Sci 49 (Suppl. 1): 188–189. (Japanese).

    Google Scholar 

  • Munger, H.M. & R.W. Robinson, 1991. Nomenclature of Cucumis melo L. Cucurbit Genet Coop Rep 14: 43–44.

    Google Scholar 

  • Naudin, C., 1859. Especes et des varietes du genre Cucumis. Ann Sci Nat 11: 5–87.

    Google Scholar 

  • Nei, M., 1972. Genetic distance between populations. Am Nat 106: 283–292.

    Article  Google Scholar 

  • Pitrat M., P. Hanelt & K. Hammer, 2000. Some comments on intraspecific classification of cultivars of melon. Proc Cucurbitaceae 2000: 29–36.

    Google Scholar 

  • Pryor, D.E., T.W. Whitaker & G.N. Davis, 1946. The development of powdery mildew resistant cantaloupes. Proc Amer Soc Hort Sci 47: 347–356.

    Google Scholar 

  • Ridgway, G.J., S.W. Sherburne & R.D. Lewis, 1970. Polymorphism in the esterases of atlantic herring. Trans Amer Fish Soc 1: 147–151.

    Article  Google Scholar 

  • Robinson, R.W. & D.S. Decker-Walters, 1997. Cucurbits. CAB International, New York.

    Google Scholar 

  • Silberstein, L., I. Kovalski, R. Huang, K. Anagnostou, M. Kyle & R. Perl-Treves, 1999. Molecular variation in melon (Cucumis melo L.) as revealed by RFLP and RAPD markers. Sci Hort 79: 101–111.

    Article  CAS  Google Scholar 

  • Stepansky, A., I. Kovalski & R. Perl-Treves, 1999.Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst Evol 217: 313–332.

    Article  CAS  Google Scholar 

  • Sujatha, V.S. & V.S. Seshadri, 1991. Genetics of isozyme variation in Cucumis melo L. Indian J Genet 51: 445–447.

    CAS  Google Scholar 

  • Takada, K., K. Kanazawa, K. Takatsuka & T. Kaneno, 1979. Studies on the breeding of melon resistant to cucumber mosaic virus I. Difference in resistance among melon varieties and the regional differences in their distribution. Bull Veg Ornam Crops Res Stn A 5: 1–21. (Japanese)

    Google Scholar 

  • Vallejos, C.E., 1983. Enzyme activity staining. In: S.D. Tanksley & T.J. Orton (Eds.), Isozyme in Plant Genetics and Breeding, Part A. pp. 469–516. Elsevier Science Publishers B.V., Amsterdam.

    Google Scholar 

  • Wako, T., T. Ohara, D. Ishiuchi & A. Kojima, 2000. Petiolemediated inoculation method for seedling test for gummy stem blight (Didymella broyoniae) resistance in melon. Bull Veg Ornam Crops Res Stn A 15: 71–80.

    Google Scholar 

  • Walters, T.W., 1989. Historical overview of domesticated plants in China with special emphasis on the Cucurbitaceae. Econ Bot 43: 297–313.

    Google Scholar 

  • Weir, B.S., 1996. Genetic data analysis II. Sinauer Associates, Inc. Publishers, Massachusetts.

    Google Scholar 

  • Whitaker, T.W. & G.W. Bohn, 1954. Mosaic reaction and geographic origin of accessions of Cucumis melo L. Plant Dis Reptr 38: 838–840.

    Google Scholar 

  • Whitaker, T.W. & G.N. Davis, 1962. Cucurbits – Botany, Cultivation, Utilization. Interscience Publ. Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akashi, Y., Fukuda, N., Wako, T. et al. Genetic variation and phylogenetic relationships in East and South Asian melons, Cucumis melo L., based on the analysis of five isozymes. Euphytica 125, 385–396 (2002). https://doi.org/10.1023/A:1016086206423

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016086206423

Navigation