Skip to main content

Advertisement

Log in

Plant breeding: past, present and future

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Plant breeders can help farmers increase food production by breeding new cultivars better adapted to their chosen farming systems, but these must be capable of providing the necessary plant inputs for the required levels of crop production in 2050. Until 200 years ago the farmers themselves were the plant selectors. Plant domestications, extensive crop dispersions and farmers’ selections produced thousands of locally adapted landraces of cultivated plants. During the twentieth century these were largely replaced by relatively few high yielding cultivars and the natural habitats of many of their wild relatives became endangered. Hence in situ and ex situ conservation, and evaluation and use of plant genetic resources is vital for future plant breeding. The development of scientific breeding from the beginning of the twentieth century was based on understanding the mechanism of inheritance and the mating systems of crop plants. The types of genetically uniform, high yielding cultivars that have been bred from genetically heterogeneous landraces were determined by the mode of reproduction and mating system of the cultivated plant species: inbred line (wheat) and hybrid (rice) cultivars for inbreeding species, hybrid (maize) cultivars for outbreeding species, and clonal (potato) cultivars for vegetatively propagated species. When genetically heterogeneous crops are desired, mixtures of cultivars and synthetic cultivars can be produced. Future progress in crop improvement will come from three complementary approaches: use of hybridization and selection in further conventional breeding, base broadening and introgression; mutation breeding, cisgenesis and gene editing; and genetically modified crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19:52–61. doi:10.1016/j.tplants.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  • Bennett JH, Binet FE (1956) Association between Mendelian factors with mixed selfing and random mating. Heredity 10:51–55

    Article  Google Scholar 

  • Bhullar NK, Zhang Z, Wicker T, Keller B (2010) Wheat gene bank accessions as a source of new alleles of the powdery mildew resistance gene Pm3: a large scale allele mining project. BMC Plant Biol 10:88. doi:10.1186/1471-2229-10-88

    Article  PubMed  PubMed Central  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw JE (2016) Plant breeding: past, present and future. Springer, New York

    Book  Google Scholar 

  • Bradshaw JE, Bonierbale M (2010) Potatoes. In: Bradshaw JE (ed) Root and tuber crops. Handbook of plant breeding, vol 7, Springer, New York, pp 1–52

  • Bradshaw JE, Ramsay G (2005) Utilisation of the Commonwealth Potato Collection in potato breeding. Euphytica 146:9–19

    Article  Google Scholar 

  • Brookes G (2014) Weed control changes and genetically modified herbicide tolerant crops in the USA 1996–2012. GM Crops Food 5:321–332

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlson EA (2004) Mendel’s legacy: the origin of classical genetics. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Darwin C (1876) The effects of cross and self fertilisation in the vegetable kingdom. Digitally printed 2009. Cambridge University Press, Cambridge

    Google Scholar 

  • Dawson JC, Goldringer I (2012) Breeding for genetically diverse populations: variety mixtures and evolutionary populations. In: Lammerts van Bueren ET, Myers JR (eds) Organic crop breeding. Wiley, Chichester, pp 77–98

    Google Scholar 

  • De Block M, Herrera-Estrella L, Van Montagu M, Schell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO J 3:1681–1689

    PubMed  PubMed Central  Google Scholar 

  • Dell’Acqua M, Gatti DM, Pea G, Cattonaro F, Coppens F, Magris G, Hlaing AL, Aung HH, Nelissen H, Baute J, Frascaroli E, Churchill GA, Inzé D, Morgante M, Pè ME (2015) Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biol 16:167. doi:10.1186/s13059-015-0716-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, Lian X, Shen Q, Miller AJ, Xu G (2016) Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. PNAS 113:7118–7123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (2013) Genebank standards for plant genetic resources for food and agriculture. FAO, Rome

    Google Scholar 

  • FAO, IFAD, WFP (2015) The state of food insecurity in the world 2015. Meeting the 2015 international hunger targets: taking stock of uneven progress. Rome, FAO

  • Frison C, López F, Esquinas-Alcázar JT (eds) (2011) Plant genetic resources and food security. FAO, Bioversity International and Earthscan, Abingdon

    Google Scholar 

  • Gassmann AJ, Petzold-Maxwell JL, Clifton EH, Dunbar MW, Hoffmann AM, Ingber DA, Keweshan RS (2014) Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize. PNAS 111:5141–5146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert N (2013) Case studies: a hard look at GM crops. Nature 497:24–26

    Article  CAS  PubMed  Google Scholar 

  • Godfray HCJ (2014) How can 9-10 billion people be fed sustainably and equitably by 2050? In: Goldin I (ed) Is the planet full?. Oxford University Press, Oxford, pp 104–120

    Chapter  Google Scholar 

  • Green RE, Cornell SJ, Scharlemann JPW, Balmford A (2005) Farming and the fate of wild nature. Science 307:550–555

    Article  CAS  PubMed  Google Scholar 

  • Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497

    Article  Google Scholar 

  • Guimarães EP (2012) Rice breeding. In: Carena MJ (ed) Cereals. Handbook of plant breeding, vol 3, Springer, New York, pp 99–126

  • Hallauer AR, Carena MJ (2009) Maize breeding. In: Carena MJ (ed) Cereals. Handbook of plant breeding, vol 3, Springer, New York, pp 3–98

  • Haverkort AJ, Boonekamp PM, Hutten R, Jacobsen E, Lotz LAP, Kessel GJT, Vossen JH, Visser RGF (2016) Durable late blight resistance in potato through dynamic varieties obtained by cisgenesis: scientific and societal advances in the DuRPh project. Potato Res 59:35–66

    Article  CAS  Google Scholar 

  • Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A, Hoffmann N (1984) Inheritance of functional foreign genes in plants. Science 223:496–498

    Article  CAS  PubMed  Google Scholar 

  • Hospital F (2003) Marker-assisted breeding. In: Newbury HJ (ed) Plant molecular breeding. Blackwell, Oxford, pp 30–59

    Google Scholar 

  • Hunter D, Heywood V (2011) (eds) Crop wild species: a manual of in situ conservation. Earthscan, London

  • James C (2014) Global status of commercialized biotech/GM Crops: 2014. ISAAA Brief No. 49. ISAAA: Ithaca

  • James C (2015) Global status of commercialized biotech/GM Crops: 2015. ISAAA Brief No. 51. ISAAA: Ithaca

  • Jin L, Zhang H, Lu Y, Yang Y, Wu K, Tabashnik BE, Wu Y (2014) Large-scale test of the natural refuge strategy for delaying insect resistance to transgenic Bt crops. Nat Biotech. doi:10.1038/nbt.3100

    Google Scholar 

  • Kazama Y, Hirano T, Saito H, Liu Y, Ohbu S, Hayashi Y, Abe T (2011) Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana. BMC Plant Biol 11:161. doi:10.1186/1471-2229-11-161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingsbury N (2009) Hybrid: the history & science of plant breeding. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73. doi:10.1038/327070a0

    Article  CAS  Google Scholar 

  • Love D (1992) Translator’s foreword. In: Vavilov NI (ed) Origin and geography of cultivated plants. Cambridge University Press, Cambridge

    Google Scholar 

  • Mahfouz MM, Cardi T, Stewart CN (2016) Next-generation precision genome engineering and plant biotechnology. Plant Cell Rep 35:1397–1399. doi:10.1007/s00299-016-2009-8

    Article  CAS  PubMed  Google Scholar 

  • McMahon P (2013) Feeding frenzy. Profile Books, London

    Google Scholar 

  • Mendel G (1865) Experiments in plant hybridisation. English translation with introduction. (trans: Fisher RA 1965), Oliver & Boyd, Edinburgh

  • National Academies of Sciences, Engineering, and Medicine (2016) Genetically engineered crops: experiences and prospects. The National Academies Press, Washington, DC. doi:10.17226/23395

    Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487. doi:10.1038/nbt1082

    Article  CAS  PubMed  Google Scholar 

  • Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. PNAS 109:12302–12308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pretty J, Toulmin C, Williams S (2011) Sustainable intensification in African agriculture. Int J Agric Sustain 9:5–24. doi:10.3763/ijas.2010.0583

    Article  Google Scholar 

  • Qaim M (2016) Genetically modified crops and agricultural development. Palgrave Macmillan, Basingstoke

    Book  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8(6):e66428. doi:10.1371/journal.pone.0066428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reader J (2008) Propitious esculent. William Heinemann, London

    Google Scholar 

  • Reganold JP, Wachter JM (2016) Organic agriculture in the twenty-first century. Nature Plants 2, Article number: 15221 doi:10.1038/nplants.2015.221

  • Rotherham ID (2013) The lost fens: England’s greatest ecological disaster. The History Press, Stroud

    Google Scholar 

  • Shu QY, Forster BP, Nakagawa H (2012) Plant mutation breeding and biotechnology. CABI, Wallingford

    Book  Google Scholar 

  • Shull GH (1908) The composition of a field of maize. Am Breeders’ Assoc Rep 4:296–301

    Google Scholar 

  • Stadler LJ (1928a) Genetic effects of X-rays in maize. PNAS 14:69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadler LJ (1928b) Mutations in barley induced by X-rays and radium. Science 68:186–187

    Article  CAS  PubMed  Google Scholar 

  • Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945

    Article  PubMed  PubMed Central  Google Scholar 

  • Szarejko I (2012) Haploid mutagenesis. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Wallingford, pp 387–410

    Chapter  Google Scholar 

  • Tatum LA (1971) The southern corn leaf blight epidemic. Science 171:1113–1116

    Article  CAS  PubMed  Google Scholar 

  • Troyer AF (2006) Adaptedness and heterosis in corn and mule hybrids. Crop Sci 46:528–543

    Article  Google Scholar 

  • Ullstrup AJ (1972) The impacts of the southern corn leaf blight epidemic of 1970–1971. Ann Rev Phytopathol 10:37–50

    Article  Google Scholar 

  • Vavilov NI (1940) The theory of the origin of cultivated plants after Darwin. Nauka [Science] 2:55–75

    Google Scholar 

  • Virmani SS, Ilyas-Ahmed M (2007) Rice breeding for sustainable production. In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell, Oxford, pp 141–191

    Chapter  Google Scholar 

  • Wricke G, Weber WE (1986) Quantitative genetics and selection in plant breeding. Walter de Gruyter, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Bradshaw.

Additional information

This article is part of the Topical Collection on Plant Breeding: the Art of Bringing Science to Life. Highlights of the 20th EUCARPIA General Congress, Zurich, Switzerland, 29 August–1 September 2016

Edited by Roland Kölliker, Richard G. F. Visser, Achim Walter & Beat Boller

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bradshaw, J.E. Plant breeding: past, present and future. Euphytica 213, 60 (2017). https://doi.org/10.1007/s10681-016-1815-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-016-1815-y

Keywords

Navigation