Skip to main content
Log in

Electronic Structure and Chemical Bonding in β-Sialons

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Using the discrete variation procedure we investigated the electronic structure, charge distributions, and chemical bonding in solid solutions of variable composition based on β-Si3N4 with Si substituted by Al and N substituted by O (the general composition \(SI_{6 - x} Al_x O_x N_{8 - x} \)). The electronic processes at the initial stage of SiAlON formation were studied (x = 1, 2) considering different distributions of Al–O pairs in the lattice of β-Si3N4. The distribution mode of the dopant is found to be a more significant factor affecting the electronic structure of sialons compared to increased Al–O content; in particular, clusterization of dopant pairs leads to increased forbidden gap and splitting of the upper and lower valence bands. The results of calculations are used to interpret the systematic variations in the functional properties of β-sialons depending on their chemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. H. Jack and W. I. Wilson, Nature, 238, 238-239 (1972).

    Google Scholar 

  2. K. H. Jack, Mat. Res. Bull., 13, 1327-1333 (1978).

    Google Scholar 

  3. D. W. Richardson and P. M. Stephan, Mater. Sci. Forum, 47, 282-307 (1989).

    Google Scholar 

  4. G. Z. Gao and R. Metselaar, Chem. Mater., 3, No. 2, 242-252 (1991).

    Google Scholar 

  5. T. Ekstrom and M. Nygren, J. Am. Ceram. Soc., 75, No. 2, 259-276 (1992).

    Google Scholar 

  6. R. Ray, ibid., 76, No. 4, 2147 (1993).

    Google Scholar 

  7. Y. B. Cheng and J. Drennan, ibid., 79, No. 4, 401-403 (1996).

    Google Scholar 

  8. R. Metselaar, J. Europ. Ceram. Soc., 18, No. 3, 183-185 (1996).

    Google Scholar 

  9. M. P. Albano, A. N. Scian, and E. Pereira, Sil. Ind., 62, Nos. 5/6, 320-323 (1997).

    Google Scholar 

  10. L. Chen, E. Kny, and G. Groboth, Surf. Coating Technol., 101, Nos. 1-3, 119-128 (1998).

    Google Scholar 

  11. R. J. Xie, M. Mitomo, L. P. Huang, and X. P. Fu, J. Mater. Res., 15, No. 1, 136-141 (2000).

    Google Scholar 

  12. Z. Lences, P. Sajqalik, M. Toriyama, et al., J. Europ. Ceram. Soc., 20, No. 3, 347-355 (2000).

    Google Scholar 

  13. Y. Chen, H. Xu, K. A. Kibble, and R. Hall, Mater. Des., 21, No. 5, 453-459 (2000).

    Google Scholar 

  14. F. L. Riley, Adv. Ceram. Mater., 122, 479-487 (1996).

    Google Scholar 

  15. R. Katz, Ind. Ceram., 17, No. 1, 3-9 (1997).

    Google Scholar 

  16. A. L. Ivanovskii and G. P. Shveikin, Quantum Chemistry in Materials Science. Non-Metal High-Melting Compounds and Non-Metal Ceramics [in Russian], “Ekaterinburg,” Ekaterinburg (2000).

  17. A. L. Ivanovskii, Russ. J. Inorg. Chem., 45, Suppl. 1, 1-36 (2000).

    Google Scholar 

  18. I. Tanaka, S. Nasu, H. Adachi, et al., Acta Metall. Mater., 40, No. 3, 1995-1999 (1992).

    Google Scholar 

  19. I. Tanaka, K. Niihara, S. Nasu, and H. Adachi, J. Am. Ceram. Soc., 76, No. 5, 2833-2838 (1993).

    Google Scholar 

  20. T. Nakayasu, T. Yamada, I. Tanaka, et al., ibid., 81, No. 3, 565-570 (1998).

    Google Scholar 

  21. Y.-N. Xy and W. Y. Ching, Phys. Rev. B., 51, No. 24, 17379-17389 (1995).

    Google Scholar 

  22. W.-Y. Ching, M. Huang, and S. Mo, J. Am. Ceram. Soc., 83, No. 4, 780-786 (2000).

    Google Scholar 

  23. A. L. Ivanovskii, S. V. Okatov, and G. P. Shveikin, Dokl. Ross. Akad. Nauk, 374, Nos. 4-6, 208-210 (2000).

    Google Scholar 

  24. R. Grun, Acta Crystallogr., B35, No. 4. 800-804 (1979).

    Google Scholar 

  25. M. V. Ryzhkov and A. L. Ivanovskii, Zh. Strukt. Khim. 40, No. 4, 630-638 (1999).

    Google Scholar 

  26. M. R. Press and D. E. Ellis, Phys. Rev. B, 35, No. 9, 4438-4454 (1987).

    Google Scholar 

  27. O. Gunnarsson and B. I. Lundqvist, ibid., 13, No. 10, 4274-4298 (1976).

  28. M. V. Ryzhkov, Zh. Strukt. Khim., 39, No. 6, 1134-1140 (1998).

    Google Scholar 

  29. J. Robertson, Phil. Mag., 63, No. 1, 47-77 (1991).

    Google Scholar 

  30. R. S. Mulliken, Ann. Rev. Phys. Chem., 29, 1-30 (1978).

    Google Scholar 

  31. A. Ya. Kupryazhkin, M. V. Ryzhkov, and F. G. Dudorov, Zh. Fiz. Khim., 71, No. 7, 1253-1258 (1997).

    Google Scholar 

  32. M. V. Ryzhkov, N. I. Medvedeva, and V. A. Gubanov, J. Phys. Chem. Sol., 56, No. 9, 1231-1237 (1995).

    Google Scholar 

  33. V. A. Gubanov, A. L. Ivanovskii, and M. V. Ryzhkov, Quantum Chemistry in Materials Science [in Russian], Nauka, Moscow (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryzhkov, M.V., Ivanovskii, A.L. Electronic Structure and Chemical Bonding in β-Sialons. Journal of Structural Chemistry 43, 18–25 (2002). https://doi.org/10.1023/A:1016057412847

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016057412847

Keywords

Navigation