Skip to main content
Log in

Metal Dusting of Fe–Cr and Fe–Ni–Cr Alloys Under Cyclic Conditions

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Metal dusting is the disintegration of alloys into carbon and metal particles during high-temperature exposure to carbon-bearing gases. Model Fe–Cr and Fe–Ni–Cr alloys were studied to test the hypothesis that M3C formation is necessary for metal dusting to occur. The alloys were exposed to a 68% CO–26% H2–6% H2O gas mixture at 680°C (ac=2.9) under thermal cycling conditions. Equilibrium calculations predicted the formation of M3C at the surface of Fe–25Cr, but not Fe–60Cr. All compositions were expressed in w/o, weight percent. Alloys of Fe–25Cr with 2.5, 5, 10, and 25 w/o nickel additions were also exposed to the same conditions to study the role of nickel in destabilizing the precipitation of M3C and, hence, altering the resistance to metal dusting. Metal dusting was observed on all the alloys except Fe–60Cr. For Fe–25Cr, Fe–25Cr–2.5Ni, and Fe–25Cr–5Ni, the carbonization and dusting process was localized, and its incidence decreased in Fe–25Cr–2.5Ni, consistent with the increased destabilization of M3C precipitation. However, Fe–25Cr–10Ni and Fe–25Cr–25Ni both underwent extensive dusting in the absence of protective Cr2O3 formation. The carbon deposits formed consisted of carbon filaments, which contained particles at their tips. These were shown by electron diffraction to be exclusively Fe3C in Fe–25Cr, Fe–25Cr–2.5Ni, and Fe–25Cr–5Ni, and a mixture of austenite and (Fe,Ni)3C in Fe–25Cr–10Ni and Fe–25Cr–25Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. F. Hochman, Proceedings of the 4th International Congress on Metal Corrosion, N. E. Hammer, ed. (NACE, Houston, TX, 1972), p. 258.

    Google Scholar 

  2. R. F. Hochman, Proceedings of the Symposium on Properties of High Temperature Alloys with Emphasis on Environmental Effects, Z. A. Foroulis and F. S. Pettit, eds. (The Electrochemical Society, Pennington, NJ, 1972), p. 715.

    Google Scholar 

  3. H. J. Grabke, R. Krajak, and E. M. Müller-Lorenz, Werkst. Korros. 44, 89 (1993).

    Google Scholar 

  4. H. J. Grabke, R. Krajak, E. M. Müller-Lorenz, and S. Strauß, Werkst. Korros. 47, 495 (1996).

    Google Scholar 

  5. H. J. Grabke, E. M. Müller-Lorenz, J. Klöwer, and D. C. Agarwal, Mater. Performance 37, 58 (1998).

    Google Scholar 

  6. R. Schneider, E. Pippel, J. Wolftersdolf, S. Strauß, and H. J. Grabke, Steel Res. 68, 326 (1997).

    Google Scholar 

  7. R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite, J. Catal. 26, 51 (1972).

    Google Scholar 

  8. J. L. Figueiredo, C. A. Bernardo, J. J. Chludzinski, Jr., and R. T. K. Baker, J. Catal. 110, 127 (1988).

    Google Scholar 

  9. Y. Nishiyama and Y. Tamai, J. Catal. 33, 98 (1974).

    Google Scholar 

  10. J. Rostrup-Nielsen and D. L. Trimm, J. Catal. 48, 155 (1977).

    Google Scholar 

  11. M. Audier and M. Coulon, Carbon 23, 317 (1985).

    Google Scholar 

  12. R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite, J. Catal. 26, 51 (1972).

    Google Scholar 

  13. W. L. Holstein and M. Boudart, Latin Amer. J. Chem. Eng. Appl. Chem. 62, 107 (1983).

    Google Scholar 

  14. M. Audier, P. Bowen, and W. Jones, J. Crystallogr. 24, 291 (1983).

    Google Scholar 

  15. A. Sacco, P. Thacker, T. N. Chang, and A. T. S. Chiang, J. Catal. 85, 224 (1984).

    Google Scholar 

  16. R. T. K. Baker, J. R. Alonzo, J. A. Dumesic, and D. J. C. Yates, J. Catal. 77, 74 (1982).

    Google Scholar 

  17. A. J. H. Kock, P. K. de Bokx, E. Boellard, and J. W. Geus, J. Catal. 96, 468 (1985).

    Google Scholar 

  18. I. Stewart, M. J. Tricker, and J. A. Cairns, J. Catal. 94, 360 (1985).

    Google Scholar 

  19. I. A. Alstrup, J. Catal. 109, 241 (1988).

    Google Scholar 

  20. E. C. Bianchini and C. R. F. Lund, J. Catal. 117, 455 (1989).

    Google Scholar 

  21. B. Sundman, B. Jansson, and J.-O. Andersson, CALPHAD 9, 135 (1985).

    Google Scholar 

  22. C. S. Giggins and F. S. Pettit, Oxid. Met. 14, 363 (1980).

    Google Scholar 

  23. R. A. Perkins, R. A. Padgett, and N. K. Tunali, Metall. Trans. 4, 2535 (1973).

    Google Scholar 

  24. A. F. Smith, Metal Sci. 8, 407 (1974).

    Google Scholar 

  25. A. Schnaas and H. J. Grabke, Oxid. Met. 12, 387 (1978).

    Google Scholar 

  26. H. J. Grabke, Corrosion 51, 711 (1995).

    Google Scholar 

  27. C. A. Barrett and C. E. Lowell, Oxid. Met. 9, 307 (1975).

    Google Scholar 

  28. D. J. Young and O. Ahmed, Mater. Sci. Forum 369-372, 93 (2001).

    Google Scholar 

  29. S. I. Ford, P. R. Munroe, and D. J. Young, Mater. High Temp. 17, 279 (2000).

    Google Scholar 

  30. R. T. K. Baker, D. J. C. Yates, and J. A. Dumesie, Coke Formation on Metal Surfaces, L. F. Albright and R. T. K. Baker, eds. (ACS Symp. Ser. 220 (1982), p. 1.

  31. E. Pippel, J. Woltersdolf, H. J. Grabke, and S. Strauß, Steel Res. 66, 217 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toh, C., Munroe, P. & Young, D. Metal Dusting of Fe–Cr and Fe–Ni–Cr Alloys Under Cyclic Conditions. Oxidation of Metals 58, 1–21 (2002). https://doi.org/10.1023/A:1016032722703

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016032722703

Navigation