Skip to main content
Log in

Condensation of 2-Pyridylmethyllithium Nucleophiles and Pyridine Electrophiles as a Convenient Synthetic Route to Polydentate Chelating N-Donor Ligands

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Abstract

Condensation of 2-pyridylmethyllithium or (6-methyl-2-pyridyl)methyllithium nucleophiles and pyridine, 2-picoline, or 4-tert-butylpyridine as electrophiles leads to new polydentate N-donor ligands, methyl-, tert-butyl-substituted tripyridinedimethanes, or to tripyridinedimethane itself, in good or high yields. Depending on the reagent ratio, solvent used, and reaction conditions, the corresponding intermediate dipyridinemethanes can be minor by-product or major products of the condensation. In contrast to 2-pyridylmethyllithium, lithiated 2-isopropylpyridine does not react with pyridine electrophiles. Vice versa, nucleophilic substitution at the C(2)-pyridine carbon of 2,2-bis(2-pyridyl)propane with 2-pyridylmethyllithium takes place to produce products of condensation of 2-isopropylpyridine and dipyridylmethyllithium. DFT calculations of the Gibbs free energies of reactions combined with pK a values of the CH-acids involved help to explain the reactivity observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Canty, A. Dedieu, H. Jin, A. Milet, and M. K. Richmond, Organometallics, 15, 2845 (1996).

    Google Scholar 

  2. D. D. Wick and K. I. Goldberg, J. Am. Chem. Soc., 119, 10235 (1997).

    Google Scholar 

  3. S. A. O'Reilly, P.S. White, and J. L. Templeton, J. Am. Chem. Soc., 118, 5684 (1996).

    Google Scholar 

  4. C. M. Wang, J. W. Ziller, and T. C. Flood, J. Am. Chem. Soc., 117, 1647 (1995).

    Google Scholar 

  5. G. Wilkinson (editor), Comprehensive Coordination Chemistry. The Synthesis, Reactions, Properties, and Applications of Coordination Compounds, Pergamon Press, Oxford; New York; Toronto, 1987, Vol. 2, 73.

    Google Scholar 

  6. L. F. Szczepura, L. M. Witham, and K. J. Takeuchi, Coord. Chem. Rev., 174, 5 (1998).

    Google Scholar 

  7. J. Canty, N. J. Minchin, B. W. Skelton, and A. H. White, J. Chem. Soc., Dalton Trans., 2201 (1986).

  8. J. Manzur, Transit. Met. Chem., 11, 220 (1986).

    Google Scholar 

  9. A. Meister, N. Takano, T. Chuard, M. Graf, K. Bernauer, H. Stoeckli-Evans, and G. Suess-Fink, Z. Anorg. Allgem. Chem., 621, 117 (1995).

    Google Scholar 

  10. M. T. Garland and D. Grandjean, Acta Crystallogr., C43, 643 (1987).

    Google Scholar 

  11. A. M. Garcia and J. Manzur, Acta Crystallogr., C50, 1882 (1994).

    Google Scholar 

  12. 12. E. Spodine, J. Manzur, M. T. Garland, J. P. Fackler, Jr., R. J. Staples, and B. Trzcinska-Bancroft, Inorg. Chim. Acta, 203, 73 (1993).

    Google Scholar 

  13. H. Vorbrueggen and M. Maas, Heterocycles, 27, 2659 (1988).

    Google Scholar 

  14. C. Osuch and R. Levine, J. Am. Chem. Soc., 78, 1723 (1956).

    Google Scholar 

  15. F. P. Schmitz, H. Hilgers, and B. Gemmel, Makromol. Chem., 191, 1033 (1990).

    Google Scholar 

  16. E. Buncel and B. Menon, J. Am. Chem. Soc., 99, 4457 (1977).

    Google Scholar 

  17. D. Algrim, J. E. Bares, J. C. Branca, and F. G. Bordwell, J. Org. Chem., 43, 5024 (1978).

    Google Scholar 

  18. R. R. Fraser, T. S. Mansour, and S. Savard, J. Org. Chem., 50, 3232 (1985).

    Google Scholar 

  19. F. G. Bordwell, J. E. Bartmess, and J. A. Hautala, J. Org. Chem. 43, 3095 (1978).

    Google Scholar 

  20. E. Pasquinet, P. Rocca, F. Marsais, A. Goddard, and G. Queguiner, Tetrahedron, 54, 8771 (1998).

    Google Scholar 

  21. R. G. Parr and W. Yang, Density-functional Theory of Atoms and Molecules, Oxford, 1989.

  22. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).

    Google Scholar 

  23. Yu. A. Ustynyuk, L. Yu. Ustynyuk, D.N. Laikov, and V.V. Lunin, J. Organomet. Chem., 597, 182 (2000).

    Google Scholar 

  24. W. J. Stevens, H. Bash, and M. Krauss, J. Chem. Phys., 81, 6026 (1984).

    Google Scholar 

  25. W. J. Stevens, H. Bash, M. Krauss, and P. Jasien, Can. J. Chem., 70, 612 (1992).

    Google Scholar 

  26. T. R. Cundari and W. J. Stevens, J. Chem. Phys., 98, 5555 (1993).

    Google Scholar 

  27. P. J. Chivers and T. A. Crabb, Tetrahedron, 26, 3369 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vedernikov, N., Miftakhov, R., Borisoglebski, S.V. et al. Condensation of 2-Pyridylmethyllithium Nucleophiles and Pyridine Electrophiles as a Convenient Synthetic Route to Polydentate Chelating N-Donor Ligands. Chemistry of Heterocyclic Compounds 38, 406–416 (2002). https://doi.org/10.1023/A:1016023103898

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016023103898

Navigation