Skip to main content
Log in

Air Oxidation of Ni–Ti Alloys at 650–850°C

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation of pure Ni and three Ni–Ti alloys containing 5, 10, and 15 wt.% Ti over the temperature range 650–850°C in air was studied to examine the effect of titanium on the oxidation resistance of pure nickel. Ni–5Ti is a single-phase solid solution, while the other two alloys consisted of nickel solid solution (α-Ni) and TiNi3. The oxidation of Ni–Ti alloys at 650°C follows an approximately parabolic rate law and produces a decrease in the oxidation rate of pure Ni by forming an almost pure TiO2 scale. At higher temperatures, Ni–Ti alloys also follow an approximately parabolic oxidation, and their oxidation rates are close to or faster than those of pure Ni. Duplex scales containing NiO, NiTiO3 and TiO2 formed. Some internal oxides of titanium formed, especially at 850°C. In addition, the two-phase structure of Ni–10Ti and Ni–15Ti was transformed into a single-phase structure beneath the scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. E. Baumgartner, J. Electrochem. Soc. 131, 1850 (1984).

    Google Scholar 

  2. R. D. Pierce, J. L. Smith, and R. B. Poeppel, in Molten Carbonate Fuel Cell Technology, J. R. Selman and T. D. Claar, eds. PV 84-13 (The Electrochemical Society Proceedings Series, Pennington, NJ (1984), p 147.

    Google Scholar 

  3. L. Plomp and J. B. Veldhuis, J. Power Sources 39, 369 (1992).

    Google Scholar 

  4. R. D. Pierce, J. L. Smith, and G. H. Kucera, in Proceedings of the Second Symposium on Molten Carbonate Fuel Cell Technology, J. R. Selman, D. A. Shores, H. C. Maru, and I. Uchida, eds. PV 90-16 (The Electrochemical Society Proceedings Series, Pennington, NJ, 1990), p. 226.

    Google Scholar 

  5. L. Plomp, E. F. Sitters, J. P. Huijsmans, and S. B. Van de Molen, in Proceedings of the Second Symposium on Molten Carbonate Fuel Cell Technology, J. R. Selman, D. A. Shores, H. C. Maru, and I. Uchida, eds., PV 90-16 (The Electrochemical Society Proceedings Series, Pennington, NJ, 1990), p. 247.

    Google Scholar 

  6. L. Plomp, E. F. Sitters, C. Vessies, and F. C. Eckes, J. Electrochem. Soc. 141, 629 (1991).

    Google Scholar 

  7. M. S. Yazici and J. R. Selman, J. Electroanal. Chem. 457, 89 (1998).

    Google Scholar 

  8. T. Fukui, S. Ohara, H. Okawa, T. Hotta, and M. Naito, J. Power Sources 86, 340 (2000).

    Google Scholar 

  9. L. Daza, C. M. Rangel, J. Baranda, M. T. Casais, M. J. Martinez, and J. A. Alonso, J. Power Sources 86, 329 (2000).

    Google Scholar 

  10. C. L. Zeng and W. T. Wu, Corros. Sci. 44, 1 (2002).

    Google Scholar 

  11. U. Krupp and H.-J. Christ, Oxid. Met. 52, 277 (1999).

    Google Scholar 

  12. G. C. Savva, G. C. Weatherly, and J. S. Kirkaldy, Scripta Metall. 34, 1087 (1996).

    Google Scholar 

  13. G. C. Savva, G. C. Weatherly, and J. S. Kirkaldy, Met. Mater. Trans. 27A, 1611 (1996).

    Google Scholar 

  14. Alloy Phase Diagrams (ASM, Metals Park, OH, 1992).

  15. P. Kofstad, High Temperature Corrosion (Elsevier Appl. Sci., London, 1988).

    Google Scholar 

  16. P. Kofstad, J. Less-Common Met. 13, 635 (1967).

    Google Scholar 

  17. F. Abe, H. Araki, H. Yoshida, and M. Okada, Oxid. Met. 27, 21 (1987).

    Google Scholar 

  18. D. A. Venkatu, and L. E. Poteat, Mater. Sci. Eng. 5, 258 (1969/70).

    Google Scholar 

  19. A. Atkinson and R. I. Taylor, Philos. Mag. A 39, 581 (9).

  20. J. Unnam, R. N. Shenoy, and R. K. Clark, Oxid. Met. 26, 231 (1986).

    Google Scholar 

  21. T. Armbruster, J. Solid State Chem. 36, 275 (1981).

    Google Scholar 

  22. G. M. Kale, Metall. Mater. Trans. B 29B, 31 (1998).

    Google Scholar 

  23. C. Stueber, M. Lerch, and W. Laqua, Z. Anorg. Allgem. Chem. 621, 1471 (1995).

    Google Scholar 

  24. M. G. Isakov, V. K. Tolpygo, Defect Diffusion Forum 66-69, 1539 (1989).

    Google Scholar 

  25. C. Wagner, Z. Electrochem. 63, 772 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, C., Li, M., Liu, G. et al. Air Oxidation of Ni–Ti Alloys at 650–850°C. Oxidation of Metals 58, 171–184 (2002). https://doi.org/10.1023/A:1016020709500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016020709500

Navigation