Skip to main content
Log in

Role of Growth Stresses on the Structure of Oxide Scales on Nickel at 800 and 900°C

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The development and relief of intrinsic growth stresses in oxide scales on nickel of different purity have been investigated by combining the deflection test in monofacial oxidation (DTMO) with acoustic-emission analysis (AE). Parallel metallographic analysis gave information about the development of the physical- defect structure and all other structural features. The investigations were performed for 100 hr at 800 as well as 900°C in air. The assumption of elastic behavior led to the best correlation between models, literature data, and results of the present investigations. Microcracks are responsible for the relief of growth stress and inward oxygen penetration leads to the typical NiO duplex scale. The growth of the microcracks is initiated at large pore populations at the oxide–metal interface that most probably form due to outward cation-diffusion and vacancy condensation. The pore formation is increased by the presence of impurities. An equilibrium of microcracking and crack healing is finally reached, leading to a continuous growth of the inner and outer NiO layers of the duplex scale. The scale growth stresses are mainly compressive and can reach maximum values of −560 MPa at 900°C. An estimation of the fracture toughness of the oxide–metal interface assuming a wavy interface led to a KIc value of about 2 MNm-3/2 at 900°C

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Schütze, Oxid. Met. 44, 29 (1995).

    Google Scholar 

  2. I. Küppenbender and M. Schütze, Oxid. Met. 42, 109 (1994).

    Google Scholar 

  3. M. Schzütze, Protective Oxide Scales and Their Breakdown (Wiley, Chichester, 1997).

    Google Scholar 

  4. A.-M. Huntz and M. Schütze, Mater. High Temp. 12, 151 (1994).

    Google Scholar 

  5. J. Stringer, Corros. Sci. 10, 513 (1970).

    Google Scholar 

  6. M. Schütze, in High Temperature Corrosion and Materials Chemistry, P. Y. Hou et al., eds. (The Electrochemical Society, Pennington, NJ, 1998), p. 1.

    Google Scholar 

  7. I. Küppenbender and M. Schütze, Oxid. Met. 42, 109 (1994).

    Google Scholar 

  8. R. E. Pawel, J. V. Cathcart, and J. J. Campbell, J. Electrochem. Soc. 110, 551 (1963).

    Google Scholar 

  9. D. Delaunay, A.-M. Huntz, and P. Lacombe, Corros. Sci. 20, 1109 (1980).

    Google Scholar 

  10. J. G. Zhao and A.-M. Huntz, J. Mater. Sci. 19, 3166 (1984).

    Google Scholar 

  11. H. E. Evans, Mater. Sci. Eng. A203, 117 (1995).

    Google Scholar 

  12. W. Przybilla, Ph.D. Thesis, RWTH Aachen (2000).

  13. T. Ueno, Trans. JIM 15, 167 (1974).

    Google Scholar 

  14. T. Ueno, Jpn. J. Appl. Phys. 14, 2081 (1975).

    Google Scholar 

  15. P. Hancock and J. R. Nicholls, Mater. Sci. Technol. 4, 398 (1988).

    Google Scholar 

  16. T. Gnäupel-Herold and W. Reimers, Proceedings of the International Conference on Residual Stresses V, T. Ericsson, M. Odin, A. Andersson, eds. Linköping, Sweden (1997).

    Google Scholar 

  17. A. Atkinson and W. Smart, J. Electrochem. Soc. 11, 2886 (1988).

    Google Scholar 

  18. M. J. Graham and R. J. Hussey, Oxid. Met. 44, 339 (1995).

    Google Scholar 

  19. F. N. Rhines and J. S. Wolf, Metall. Trans. 1, 1701 (1970).

    Google Scholar 

  20. J. Robertson and M. I. Manning, Mater. Sci. Technol. 4, 1064 (1988).

    Google Scholar 

  21. H. E. Evans, G. P. Mitchell, R. C. Lobb, and D. R. J. Owen, Proc. R. Soc. London A440, 1 (1983).

    Google Scholar 

  22. S. Mrowec, Corros. Sci. 7, 563 (1967).

    Google Scholar 

  23. G. B. Gibbs and R. Hales, Corros. Sci. 17, 487 (1977).

    Google Scholar 

  24. D. P. Moon, Oxid. Met. 31, 71 (1989).

    Google Scholar 

  25. D. P. Moon, Surf. Interface Anal. 12, 27 (1988).

    Google Scholar 

  26. G. C. Stoney, Proc. R. Soc. London A82, 172 (1909).

    Google Scholar 

  27. A. Brenner and S. Senderoff, J. Res. Nat. Bur. Std. 42, 105 (1949).

    Google Scholar 

  28. M. Schulte, Ph.D. Thesis, RWTH Aachen (1996).

  29. F. Morin, L. C. Dufour, and G. Trudel, Oxid. Met. 37, 39 (1992).

    Google Scholar 

  30. F. Morin and L. C. Dufour, Oxid. Met. 39, 137 (1993).

    Google Scholar 

  31. P. Kofstad, Oxid. Met. 24, 265 (1985).

    Google Scholar 

  32. A. G. Evans, D. Rajder, and D. L. Douglass, Oxid. Met. 4, 151 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Przybilla, W., Schütze, M. Role of Growth Stresses on the Structure of Oxide Scales on Nickel at 800 and 900°C. Oxidation of Metals 58, 103–145 (2002). https://doi.org/10.1023/A:1016016608591

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016016608591

Navigation