Skip to main content
Log in

Clonal architecture in marine macroalgae: ecological and evolutionary perspectives

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

The study of the ecological and evolutionary consequences of clonal growth in vascular plants has been widely addressed; however, marine macroalgae, which are interesting modular organisms that combine ‘simple’ morphologies and complex life cycles, have been almost ignored. This paper presents a review and analysis of the ecological and evolutionary consequences of clonality in marine macroalgae, including three main subjects: (1) modular construction (modules and ramets); (2) life cycle and evolutionary perspectives, and (3) ecological perspectives of clonality in marine macroalge. The biological emergent attributes of clonality are present in marine macroalgae e.g. high longevity of the genet by the continual renewal of modules, and variable morphological plasticity of ramets and modules in relation to environmental conditions. However, experimental work is still needed to solve questions such as the effect of crowding on survival rates and use of resources, as well as its effect on sexual or asexual patterns of reproduction. I expect that the study of the evolutionary consequences of the combined presence of alternation of generations and clonal growth in marine macroalgae will make important contributions to clonal plant theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benzie, J.A.H., Ballment, E., Chisholm, J.R.M. and Jaubert, J.M. (2000) Genetic variation in the green alga Caulerpa taxifolia. Aquat. Bot. 66, 131-139.

    Google Scholar 

  • Brawley, S.H. and Johnson, L.E. (1992) Gametogenesis, gamets and zygotes: an ecological perspective on sexual reproduction in the algae. Br. Phycol. J. 27, 233-252.

    Google Scholar 

  • Clifton, K.E. and Clifton, L.M. (1999) The phenology of sexual reproduction by green algae (Bryopsidales) on Caribbean coral reefs. J Phycol. 35, 24-34.

    Google Scholar 

  • Collado-Vides, L. (2002) Morphological plasticity of Caulerpa prolifera (Caulerpales-Chlorophyta) in relation to growth form in a coral reef lagoon. Bot. Mar. (in press).

  • Collado-Vides, L. and Robledo, D. (1999) Morphology and photosynthesis of Caulerpa (Chlorophyta) in relation to their growth form. J. Phycol. 35, 325-330.

    Google Scholar 

  • Collado-Vides, L., Gómez, G., Gómez, V. and Lechuga, G. (1997) Simulation of the clonal growth of Bostrychia radicans (Ceramiales Rhodophyta) using L-Systems. BioSystems 42, 19-27.

    Google Scholar 

  • Commans, R. and Hommersand, M. (1990) Vegetative growth and organization. In K.M. Cole and R.G. Sheath (eds) Biology of the Red Algae. Cambridge University Press, Cambridge, pp. 275-304.

    Google Scholar 

  • Coyer, J.A., Robertson, D.L. and Alberte, R.S. (1994) Genetic variability within population and between diploid/haploid tissue of Macrosystis pyrifera (Phaeophyta). J. Phycol. 30, 545-552.

    Google Scholar 

  • De Wreede, R.E. and Green, L. (1990) Patterns of gametophyte dominance of Iridaea splendens (Rhodophyta) in Vancouver harbor, Vancouver, British Columbia. J. Appl. Phycology 2, 27-34.

    Google Scholar 

  • Dixon (1965) Perennation, vegetative propagation and algal life histories, with special reference to Asparagopsis and other Rhodophyta. Bot. Gothoburgensia III, 67-74.

    Google Scholar 

  • Dyck, L. and De Wreede, R.E. (1995) Patterns of seasonal demographic change in the alternate isomorphic stages of Mazzaella splendens (Gigartinales, Rhodophyta). Phycologia 34, 390-395.

    Google Scholar 

  • Eriksson, O. and Jerling, L. (1990) Hierarchical selection and risk spreading in clonal plants. In J. van Groenendael and H. de Kroon (eds) Clonal Growth in Plants: Regulation and Function. SPB Academic Publishing, The Hague, pp. 79-94.

    Google Scholar 

  • Fargeström, T., Briscoe, D. and Sunnucks, P. (1998) Evolution of mitotic cell-lineages in multicellular organisms. Trends Ecol. Evol. 13, 117-120.

    Google Scholar 

  • Franco, M. (1986) The influence of neighbors on the growth of modular organisms with an example from trees. In J. Harper, B. Rosen and J. White (eds) The Growth and Form of Modular Organisms. Cambridge University Press, Cambridge, pp. 209-226.

    Google Scholar 

  • Friedmann, E.I. and Roth, W.C. (1977) Development of the siphonous green algae Penicillus and the Espera state. Bot. J. Linn. Soc. 74, 189-214.

    Google Scholar 

  • Fritsch, F.E. (1935) The Structure and Reproduction of the Algae Vol I. Cambridge University Press, Cambridge, 791 pp.

    Google Scholar 

  • Garbary, D.J. and Tam, C. (1989) Blidingia minima var. stolonifera var. nov. (Ulvales, Chlorophyta) from British Columbia: systematics, life history and morphogenesis. Nord. J. Bot. 9, 321-328.

    Google Scholar 

  • Gill, D.E., Chao, L., Perkins, S.L. and Wolf, J.B. (1995) Genetic mosaicism in plants and clonal animals. Ann. Rev. Ecol. Syst. 26, 423-444.

    Google Scholar 

  • Hardwick, R. (1986) Physiological consequences of modular growth in plants. In J. Harper, B. Rosen and J. White (eds) The Growth and Form of Modular Organisms. Cambridge University Press, Cambridge, pp. 161-174.

    Google Scholar 

  • Harper, J. (1981) The concept of population in modular organisms. In R. May (ed) Theoretical Ecology: Principles and Applications. Blackwell Scientific Pub., London, pp. 53-77.

    Google Scholar 

  • Harper, J. (1985) Modules, branches, and capture of resources. In J. Jackson, L. Buss and R. Cook (eds) Population Biology and Evolution of Clonal Organisms. Yale University Press, New Haven, pp. 1-34.

    Google Scholar 

  • Harper, J. and Bell, A. (1979) The population dynamics of growth form in organisms with modular construction. In A. Anderson, B. Turner and L. Taylor (eds) Population Dynamics. Oxford University Press, Oxford, pp. 29-52.

    Google Scholar 

  • Harper, J., Rosen, B. and White, J. (1986) The Growth and Form of Modular Organisms. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hoeck, C., van den Mann, D.G. and Jahns, H.M. (1995) Algae: An Introduction to Phycology. Cambridge University Press, Cambridge, UK, 627 pp.

    Google Scholar 

  • Jackson, J., Buss, L. and Cook, R. (1985) Population Biology and Evolution of Clonal Organisms. Yale University Press, New Haven, 530 pp.

    Google Scholar 

  • Jacobs, W.P. (1994) Caulerpa. Sc. Am. 66-71.

  • Kennish, R., Williams, G.A. and Lee, S.Y. (1996) Algal seasonality on an exposed rocky shore in Hong Kong and the dietary implications for the herbivorous crab Grapsus albolineatus Mar. Biol. 125, 55-64.

    Google Scholar 

  • King, R. and Puttok, C.F. (1989) Morphology and taxonomy of Bostrychia and Stictosiphonia (Rhodomelaceae/Rhodophyta). Austr. Syst. Bot. 21, 1-73.

    Google Scholar 

  • Lazo, M.L. and Chapman, A.R.O. (1998) Components of crowding in a modular seaweed: sorting through the contradictions. Mar. Ecol. Prog. Ser. 174, 257-267.

    Google Scholar 

  • Litter, M.M. and Kauker, B.J. (1984) Heterotrichy and survival strategies in the red algae Corallina officinalis L. Bot. Mar. 27, 37-44.

    Google Scholar 

  • Lobban, C.S. and Harrison, P.J. (1997) Seaweed Ecology and Physiology. Cambridge University Press, Cambridge, New York, USA, 366 pp.

    Google Scholar 

  • Lovett-Doust, L. (1981) Population dynamics and local specialization in a clonal perennial (Ranunculus repens) I. The dynamics of ramets in contrasting habitats. J. Ecol. 69, 743-755.

    Google Scholar 

  • Maggs, C.A. and Cheney, D.P. (1990) Competition studies of marine macroalgae in laboratory culture. J. Phycol. 26, 18-24.

    Google Scholar 

  • Mackie, G. (1986) From aggregates to integrates: physiological aspects of modularity in colonial animals. In: J. Harper, B. Rosen and J. White (eds) The Growth and Form of Modular Organisms. Cambridge University Press, Cambridge, pp. 175-196.

    Google Scholar 

  • Martínez, E. and Santelices, B. (1992) Size hierarchy and the −3/2 “power law” relationship in a coalescent seaweed. J. Phycol. 28, 259-264.

    Google Scholar 

  • Meinesz, A., Benichou, L., Blachier, J., Komatsu, T., Lemée, R., Molenaar, H. and Mari, X. (1995) Variations in the Structure, Morphology and Biomass of Caulerpa taxifolia in the Mediterranean Sea. Bot. Mar. 38, 499-508.

    Google Scholar 

  • Meneses, I. and Santelices, B. (1999) Strain selection and genetic variation in Gracilaria chilensis (Gracilariales, Rhodophyta). J. Applied Phycol. 11, 241-246.

    Google Scholar 

  • Meneses, I., Santelices, B. and Sanchez, P. (1999) Growth-related intraclonal genetic changes in Gracilaria chilensis (Gracilariales: Rhodophyta). Mar. Biol. 135, 391-397.

    Google Scholar 

  • Mshigeni, K.E. (1978) Field observations on the colonization of new substrata and denuded intertidal surfaces by benthic macrophytic algae. Bot. Mar. 21, 49-57.

    Google Scholar 

  • Niklas, K.J. (1994) Plant Allometry: The Scaling of Form and Process. University of Chicago Press, Chicago.

    Google Scholar 

  • Paine, R. (1984) Ecological determinism in the competition for space. Ecology 65, 1339-1348.

    Google Scholar 

  • Paine, R.T., Slocum, C.J. and Duggins, D.O. (1979) Growth and longevity in the crustose red alga Petrocelis middendorffii. Mar. Biol. 51(2), 185-192.

    Google Scholar 

  • Pineda-Krch, M. and Fagerström, T. (1999) On the potential for evolutionary change in meristematic cell lineage through intraorganismal selection. J. Evol. Biol. 12, 681-688.

    Google Scholar 

  • Poore, A.G.B. and Fagerström, T. (2000) Intraclonal variation in macroalgae: causes and evolutionary consequences. Selection 1, 39-49.

    Google Scholar 

  • Poore, A.G.B. and Fagerström, T. (2001) A general model for selection among modules in haploid-diploid life histories. Oikos 92, 256-264.

    Google Scholar 

  • Reed, D.C. and Foster, M.S. (1984) The effects of canopy shading on algal recruitment and growth in a giant kelp forest. Ecology 65, 937-948.

    Google Scholar 

  • Santelices, B. (1990) Patterns of reproduction, dispersal and recruitment in seaweeds. Oceanogr. Mar. Biol. Ann. Rev. 28, 177-276.

    Google Scholar 

  • Santelices, B. and Ojeda, F.P. (1984) recruitment, growth and survival of Lessonia nigrescens (Paheophyta) at various tidal levels in exposed habitats of central Chile. Mar. Ecol. Prog. Ser. 19, 73-82.

    Google Scholar 

  • Santelices, B. and Varela, D. (1993) Intra-clonal variation in the red seaweed Gracilaria chilensis. Mar. Biol. 116, 543-552.

    Google Scholar 

  • Santelices, B., Aedo, D. and Varela, D. (1995) Causes and implications of intra-clonal variation in Gracilaria chilensis. J. Appl. Phycol. 7, 283-290.

    Google Scholar 

  • Santelices, B., Correa, J., Meneses, I., Aedo, D. and Varela, D. (1996) Sporeling coalescence and intra-clonal variation in Gracilaria chilensis (Gracilariales: Rhodophyta) J. Phycol. 32, 313-322.

    Google Scholar 

  • Santelices, B., Correa, J., Aedo, D., Flores, V., Hormazábal, M. and Sánchez, P. (1999) Convergent biological proceses in coalescening Rhodophyta. J. Phycol. 35, 1127-1149.

    Google Scholar 

  • Santos, R. (1993) Plucking or cutting Gelidium sesquipedale? A demographic simulation of harvest impact using a population projection matrix model. Hydrobiologia 260/261, 269-276.

    Google Scholar 

  • Schiel, D.R. (1985) Growth, survival and reproduction of two species of marine algae at different densities in natural stands. J. Ecol. 73, 199-217.

    Google Scholar 

  • Schiel, D.R. and Choat, J.H. (1980) Effects of density on monospecific stands of marine algae. Nature 285, 324-326.

    Google Scholar 

  • Schmid, B. (1990) Some ecological and evolutionary consequences of modular organization and clonal growth in plants. Evol. Tr. Plants 4, 25-34.

    Google Scholar 

  • Scrosati, R. (2000) The interspecific biomass-density relationship for terrestrial plants: where do clonal red seaweeds stand and why? Ecol. Lett. 3, 191-197.

    Google Scholar 

  • Scrosati, R. and De Wreede, R.E. (1997) Dynamics of the biomass-density relationship and frond biomass inequality for Mazzaella cornucopiae (Rhodophyta, Gigartinaceae): implications for the understanding of frond interactions. Phycologia 36, 506-516.

    Google Scholar 

  • Scrosati, R. and De Wreede, R.E. (1998) The impact of frond crowding on frond bleaching in the clonal intertidal alga Mazzaella cornucopiae (Rhodophyta, Gigartinaceae) from British Columbia, Canada. J. Phycol. 34, 228-232.

    Google Scholar 

  • Sosa, P.A., Valero, M., Batista, F., and Gonzalez-Perez, M.A. (1998) Genetic structure of natural populations of Gelidium species: a re-evaluation of results. J. Appl Phycol. 10, 279-284.

    Google Scholar 

  • Steneck, R. and Adey, W.H. (1976) The role of environment in control the morphology in Lithophylum congestum, a Caribbean algal ridge builder. Bot. Mar. 19, 197-215.

    Google Scholar 

  • Sussmann, A.V. and De Wreede, R.E. (2001) Seasonality of the red algal crust ‘Petrocelis franciscana’ (Gigartinales, Rhodophyta) on boulder strewn shores of southern British Columbia, Canada. Phycological Research 49, 49-59.

    Google Scholar 

  • Taylor, W.R. (1960) Marine Algae of the Eastern Tropical and Subtropical Coasts of America. Michigan, University of Michigan Press, 870 p.

    Google Scholar 

  • Tuomi, J. and Vuorisalo, T. (1989) What are the units of selection in modular organisms? Oikos 54, 227-233.

    Google Scholar 

  • van der Meer, J.P. (1990) Genetics. In K.M. Cole and R.G. Sheath (eds) Biology of the Red Algae. Cambridge University Press, Cambridge, pp. 103-121.

    Google Scholar 

  • van der Meer, J.P. and Todd, E.R. (1977) Genetics of Gracilaria sp. (Rhodophyceae, Gigartinales). IV. Mitotic recombination and its relationship to mixed phases in the life history. Can J. Bot. 55, 2810-2817.

    Google Scholar 

  • Waller, D. and Steingraeber, D. (1985) Branching and modular growth: Theoretical models and empirical patterns. In J. Jackson, L. Buss, and R. Cook (eds) Population Biology and Evolution of Clonal Organisms. Yale University Press, New Haven, pp. 225-257.

    Google Scholar 

  • Walters, L.J. and Smith, C.M. (1994) Rapid rhizoid production in Halimeda discoidea Decaisne (Chlorophyta, Caulerpales) fragments: a mechanism for survival after separation from adult thalli. J. Exp. Mar. Biol. Ecol. 175, 105-120.

    Google Scholar 

  • Williams, G. (1986) Retrospect on modular organisms. In J. Harper, B. Rosen and J. White (eds) The Growth and Form of Modular Organisms. Cambridge University Press, Cambridge, pp. 245-250.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collado-Vides, L. Clonal architecture in marine macroalgae: ecological and evolutionary perspectives. Evolutionary Ecology 15, 531–545 (2001). https://doi.org/10.1023/A:1016009620560

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016009620560

Navigation