Skip to main content
Log in

Properties of Adsorbed Oxygen Forms on a Defective Ag(111) Surface. DFT Analysis

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A cluster model of an Ag12–3O (ASV) adsorption center using layered silver oxide as a prototype is proposed. The model includes a cation vacancy V on the Ag(111) surface and oxide type subsurface oxygen atoms Oox. Density functional theory (DFT) (B3LYP/LANL1MB approximation) is used to analyze the electronic structure of ASV and oxygen adsorption on this center, ASV+O → AS–O. As shown by the calculations, the adsorbed oxygen is associated with the subsurface oxygen atoms Oss to form structures similar to metal ozonides — Ag–Oss–Oep–Oss–Ag–Oox–Ag, containing electrophilic oxygen Oep along with the oxide oxygen Oox. The optical spectra of the ASV and AS–O centers were calculated by the configuration interaction method with single excitations (CIS). For ASV, the most intense absorption bands were obtained in the region 500-700 nm. Oxygen association is accompanied by a sharp decrease in spectrum intensity in the range 600-700 nm and an increase in the intensity of the peak at 500 nm. Vibration frequencies and (IR) intensities were determined for the ASV and AS–O centers. The ASV center exhibits a characteristic spectrum in the region 350-500 cm–1, which corresponds to the frequency spectrum of the surface oxide Ag2O. For associated oxygen forms (AS–O center), the calculations predict additional peaks around 980, 640 and 230 cm–1. These peaks are due to the vibrations of the Oss–Oep–Oss structural unit, stabilized at the cation vacancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. A. Kilty and M. W. H. Sachtler, Catal. Rev.-Sci. Eng., 10, 1-24 (1974).

    Google Scholar 

  2. M. A. Barteau and R. J. Madix, Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Vol. 4, D. A. King and D. P. Woodruff (eds.), Elsevier, Amsterdam (1982), pp. 100-116.

    Google Scholar 

  3. R. A. Van Santen and H. P. Kuipers, Adv. Catal., 35, 265-321 (1987).

    Google Scholar 

  4. P. J. Van den Hoek, E. J. Baerends, and R. A. Van Santen, J. Phys. Chem., 93, 6469-6475 (1989).

    Google Scholar 

  5. H. Kobayashi, K. Nakashiro, and T. Iwakuwa, Theor. Chem. Accounts, 102, 237-243 (1999).

    Google Scholar 

  6. V. I. Avdeev, A. I. Boronin, S. V. Koscheev, and G. M. Zhidomirov, J. Mol. Catalysis A: Chem., 154, 257-270 (2000).

    Google Scholar 

  7. J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, J. Phys. Chem., 96, 135-149 (1992).

    Google Scholar 

  8. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York (1989).

    Google Scholar 

  9. A. D. Becke, Phys. Rev., A33, 2786-2797 (1986).

    Google Scholar 

  10. C. Lee, W. Yang, and R. G. Parr, ibid., B37, 785-797 (1988).

    Google Scholar 

  11. P. J. Hay and W. R. Wadt, J. Chem. Phys., 82, 270-311 (1985).

    Google Scholar 

  12. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian-98, Revision A.7, Pittsburgh PA 199 (1998).

  13. S. S. Kabalkina, S. V. Popova, N. R. Serebryanaya, and L. F. Vereshchagin, Dokl. Akad. Nauk SSSR, 152, 853-854 (1963).

    Google Scholar 

  14. P. Mulvaney and A. Henglein, Chem. Phys. Lett., 168, 391-396 (1990).

    Google Scholar 

  15. B. G. Ershov, E. Janata, and A. Henglein, J. Phys. Chem., 97, 339-343 (1993).

    Google Scholar 

  16. A. I. Boronin, V. I. Avdeev, S. V. Koscheev, et al., Kinet. Katal., 40, 721-741 (1999).

    Google Scholar 

  17. C. Pettenkofer, I. Pockrand, and A. Otto, Surf. Sci., 135, 52-59 (1983).

    Google Scholar 

  18. A. I. Boronin, S. V. Koscheev, and K. T. Murzakhmetov, et al., App. Surf. Sci., 165, 9-14 (2000).

    Google Scholar 

  19. R. B. Grant and R. M. Lambert, Surf. Sci., 146, 256-270 (1984).

    Google Scholar 

  20. C. Benndorf, M. Franck, and F. Thieme, ibid., 128, 417-430 (1983).

    Google Scholar 

  21. K. C. Prince and A. M. Bradshow, ibid., 126, 49-62 (1983).

    Google Scholar 

  22. X. Bao, S. Dong, and J. Deng, ibid., 199, 493-506 (1988).

    Google Scholar 

  23. L. H. Tjeng, M. B. Meinders, J. Vanelp, et al., Phys. Rev., B155, 3190-3198 (1990).

    Google Scholar 

  24. P. A. Kilty, N. C. Rol, and W. M. Sachtler, Proceedings of the 5th International Congress on Catalysis (1972), pp. 929-930.

  25. P. H. McBreen and M. Moskovits, J. Catal., 103, 188-197 (1987).

    Google Scholar 

  26. D. I. Kondarides, G. N. Papatheodorou, C. G. Vaynas, and X. E. Verykios, Ber. Bunseng. Phys. Chem., 97, 709-720 (1993).

    Google Scholar 

  27. J. Deng, X. Xu, J. Wang, et al., Catal. Lett., 32, 159-170 (1995).

    Google Scholar 

  28. G. J. Millar, J. B. Metson, G. A. Bowmaker, and R. P. Cooney, J. Chem. Soc., Faraday Trans., 91, 4149-4159 (1995).

    Google Scholar 

  29. K. Wu, D. Wang, J. Deng, et al., Surf. Sci., 264, 249-257 (1992).

    Google Scholar 

  30. K. Wu, D. Wang, X. Wei, et al., J. Catal., 140, 370-383 (1993).

    Google Scholar 

  31. X. Bao, B. Pettinger, G. Ertl, and R. Schlogl, Ber. Buns. Phys. Chem., 97, 322-325 (1993).

    Google Scholar 

  32. Chuan-Bao Wang, G. Deo, and I. E. Wachs, J. Phys. Chem., B103, 5645-5656 (1999).

    Google Scholar 

  33. D. E. Tevault, R. R. Smardzewski, M. W. Urban, and K. Nakamoto, J. Chem. Phys., 77577-595 (1982)

    Google Scholar 

  34. D. E. Tevault, R. A. DeMarco, and R. R. Smardzewski, ibid., 75, 4168-4169 (1981).

    Google Scholar 

  35. A. V. Khasin, Kinet. Katal.,34, 42-69 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avdeev, V.I., Boronin, A.I. & Zhidomirov, G.M. Properties of Adsorbed Oxygen Forms on a Defective Ag(111) Surface. DFT Analysis. Journal of Structural Chemistry 43, 26–32 (2002). https://doi.org/10.1023/A:1016009529685

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016009529685

Keywords

Navigation