Skip to main content
Log in

Oral Absorption of Peptides: Influence of pH and Inhibitors on the Intestinal Hydrolysis of Leu-Enkephalin and Analogues

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Leu-enkephalin (YGGFL) and several analogues were chosen as model peptides for the study of peptide absorption and hydrolysis in the rat jejunum. An HPLC assay was adapted to detect YGGFL or the analogues and metabolites. Peptide hydrolysis was studied in the rat jejunum using a single-pass perfusion method. Extensive hydrolysis of YGGFL was observed in the rat jejunum and approaches to reduce its metabolism were studied. The brush border enzymes are a major site of enkephalin hydrolysis. Lumenal peptidases were secondary to the brush border enzymes in hydrolyzing the enkephalins in this system. In the in situ perfusion system, YGGFL is hydrolyzed primarily to Tyr and GGFL by the brush border aminopeptidase and to YGG and FL by brush border endopeptidase. Lowering the jejunal pH below 5.0 significantly reduces aminopeptidase activity and, to a lesser extent, endopeptidase activity. An aminopeptidase inhibitor, amastatin, produced more pronounced inhibitory effects at higher pH and the endopeptidase inhibitors, tripeptides YGG and GGF, are effective even below pH 5.0. Coperfusion of YGGFL with a combination of aminopeptidase and endopeptidase inhibitors, e.g., amastatin and YGG, is more effective in inhibiting hydrolysis since both metabolic pathways are inhibited. Leu-D(Ala)2-enkephalin, while showing enhanced stability against aminopeptidase hydrolysis, is hydrolyzed at the Gly–Phe bond by the endopeptidase. Its hydrolysis is not affected by pH changes or amastatin but is decreased by YGG. The YGGFL wall permeability was estimated and is not a limiting factor for oral absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. L. Ferraiolo and L. Z. Benet. Pharm. Res. 2:151–156 (1985).

    Google Scholar 

  2. M. J. Humphrey and P. S. Ringros. Drug Met. Rev. 17:283–310 (1986).

    Google Scholar 

  3. G. Kerchner and L. Geary. J. Pharmacol. Exp. Ther. 226:33–38 (1983).

    Google Scholar 

  4. B. Matuszewska, G. Liversidge, F. Ryan, J. Dent, and P. Smith. Int. J. Pharm. 46:111–120 (1988).

    Google Scholar 

  5. K. Takaori, J. Burton, and M. Donowitz. Biochem. Biophy. Res. Commun. 137:682–687 (1986).

    Google Scholar 

  6. D. Tome, A. Dumontier, M. Hautefeuille, and J. Desjeux. J. Am. Physiol. G737–G744 (1987).

  7. D. T. Pals, S. Thaisrivongs, J. Lawson, W. M. Kati, S. R. Turner, G. L. DeGraff, D. W. Harris, and G. A. Johnson. Hypertension 8:1105–1112 (1986).

    Google Scholar 

  8. D. F. Veber, R. Saperstein, R. F. Nutt, R. M. Freidinger, S. G. Brady, P. Curley, D. S. Perlow, W. J. Paleveda, C. D. Colton, A. G. Zacchei, D. J. Tocco, D. R. Hoff, R. L. J. Vandlen, J. E. Gerich, L. Hall, L. Mandarino, E. H. Cordes, P. S. Anderson, and R. Hitschmann. Life Sci. 34:1371–1378 (1984).

    Google Scholar 

  9. J. M. Wood, M. Gulati, P. Forgiarini, W. Fuhrer, and K. J. Hofbauer. Hypertension 7:797–803 (1985).

    Google Scholar 

  10. M. Saffran, C. Bedra, G. Kumar, and D. Neckers. Pharm. Sci. 77:33–38 (1988).

    Google Scholar 

  11. J. Almenoff, S. Wilk, and M. Orlosky. Biochem. Biophys. Res. Commun. 102:206–214 (1981).

    Google Scholar 

  12. I. Fulcher, R. Matsas, A. Turner, and A. Kenny. J. Biochem. 203:519–522 (1982).

    Google Scholar 

  13. J. Meek, H. Yang, and E. Costa. Neuropharmacology 16:151–154 (1977).

    Google Scholar 

  14. K. Barnes and J. Kenny. Peptides 9:55–63 (1988).

    Google Scholar 

  15. M. Coleti-Previero, H. Marras, B. Descomps, and A. Previero. Biochem. Biophys. Acta 657:122–127 (1981).

    Google Scholar 

  16. A. Hussain, J. Faraj, Y. Aramaki, and J. Truelove. Biochem. Biophys. Res. Commun. 133:923–928 (1985).

    Google Scholar 

  17. S. D. Kashi and V. H. Lee. Life Sci. 38:2019–2028 (1986).

    Google Scholar 

  18. A. Kenny and I. Fulcher. In R. Porter and G. Collins (eds.), Brush Border Membranes, Ciba Foundation Symposium, 1985, Vol. 95, pp. 12–25.

  19. J. Schwartz, M. Malfroy, and S. DeLaBaume. Life Sci. 29:1715–1740 (1981).

    Google Scholar 

  20. J. S. Morley. Annu. Rev. Pharmacol. Toxicol. 20:81–110 (1980).

    Google Scholar 

  21. D. Roemer and J. Pless. Life Sci. 24:621–624 (1979).

    Google Scholar 

  22. G. L. Amidon, P. J. Sinko, and D. Fleisher. Pharm. Res. 5:651–654 (1988).

    Google Scholar 

  23. C. R. Gardner. In R. T. Borchardt, A. J. Repta, and V. J. Stella (eds.), Directed Drug Delivery, Human Press, N.J., 1985, pp. 61–82.

    Google Scholar 

  24. M. Hu, P. J. Sinko, A. L. DeMeere, D. A. Johnson, and G. L. Amidon. J. Theor. Biol. 131:107–114 (1988).

    Google Scholar 

  25. D. A. Johnson and G. L. Amidon. J. Theor. Biol. 31:93–106 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, D.I., Amidon, G.L. Oral Absorption of Peptides: Influence of pH and Inhibitors on the Intestinal Hydrolysis of Leu-Enkephalin and Analogues. Pharm Res 8, 93–96 (1991). https://doi.org/10.1023/A:1015842609565

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015842609565

Navigation