Skip to main content
Log in

Introduction to Fourier Transform Infrared Spectroscopy and Applications in the Pharmaceutical Sciences

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The applications of infrared spectroscopy to pharmaceutical sciences is small compared to the applications of infrared spectroscopy to the fields of chemistry, biology, and biochemistry. This is unfortunate because modern routine infrared spectrometers are excellent research tools that provide very high signal-to-noise, high resolution, and extensive data-manipulation computer software packages. This review summarizes basic principles of infrared spectrometers and the use of Fourier self-deconvolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. F. Maddams. The scope and limitations of curve fitting. Appl. Spectrosc. 34:245–267 (1980).

    Google Scholar 

  2. H. H. Mantsch, D. J. Moffatt, and H. L. Casal. Fourier transform methods for spectral resolution enhancement. J. Mol.Struct. 173:285–298 (1988).

    Google Scholar 

  3. J. K. Kauppinen, D. J. Moffatt, H. H. Mantsch, and D. G. Cameron. Fourier self-deconvolution: A method for resolving intrinsically overlapped bands. Appl. Spectrosc. 35:271–276 (1981).

    Google Scholar 

  4. J. K. Kauppinen. Fourier self-deconvolution in spectroscopy. In G. A. Vanasse (ed.), Spectrometric Techniques, Vol. III, Academic Press, New York, 1983, pp. 199–232.

    Google Scholar 

  5. P. R. Griffiths and G. L. Pariente. Introduction to spectral deconvolution. Trends Anal. Chem. 5:209–215 (1986).

    Google Scholar 

  6. H. H. Mantsch, H. L. Casal, and R. N. Jones. Resolution enhancement of infrared spectra of biological systems. In R. J. H. Clark and R. E. Hester (eds.), Spectroscopy of Biological Systems, Advances in Spectroscopy, Vol. 13, Wiley and Sons, New York, 1986, pp. 1–46.

    Google Scholar 

  7. J. K. Kauppinen, D. J. Moffatt, H. H. Mantsch, and D. G. Cameron. Fourier transforms in the computation of self-deconvoluted and first-order derivative spectra of overlapped band contours. Anal. Chem. 53:1454–1457 (1981).

    Google Scholar 

  8. J. K. Kauppinen, D. J. Moffatt, D. G. Cameron, and H. H. Mantsch. Noise in Fourier self-deconvolution. Appl. Optics 20:1866–1879 (1981).

    Google Scholar 

  9. W. Yang and P. R. Griffiths. Optimization of parameters for self-deconvolution: Minimization of noise and side-lobes without apodization. Comput. Enhanced Spectrosc. 1:157–165 (1983).

    Google Scholar 

  10. D. I. James, W. F. Maddams, and P. B. Tooke. The use of Fourier deconvolution in infrared spectroscopy. I. Studies with synthetic single-peak systems. Appl. Spectrosc. 41:1362–1370 (1987).

    Google Scholar 

  11. P. R. Griffiths and J. A. de Haseth. Fourier transform infrared spectrometry. In Chemical Analysis, Vol. 83 Wiley and Sons, New York, 1986.

    Google Scholar 

  12. A. A. Michelson. Philos. Mag. 31:256 (1891).

    CAS  PubMed  Google Scholar 

  13. A. A. Michelson. Philos. Mag. 34:28 (1892).

    Google Scholar 

  14. G. Horlick. Introduction to Fourier transform spectroscopy. Appl. Spectrosc. 22:617–626 (1968).

    Google Scholar 

  15. R. N. Bracewell. Numerical transforms. Science 248:697–704 (1990).

    Google Scholar 

  16. P. C. Gillette and J. C. Koenig. Objective criteria for absorbance subtraction. Appl. Spectrosc. 38:334–337 (1984).

    Google Scholar 

  17. J. R. Powell, F. M. Wasacz, and R. T. Jakobsen. An algorithm for the reproducible spectral subtraction of water from the FTIR spectra of proteins in dilute solutions and adsorbed monolayers. Appl. Spectrosc. 40:339–344 (1986).

    Google Scholar 

  18. P. R. Griffiths, J. A. de Haseth, and L. V. Azarraga. Capillary GC/FTIR. Anal. Chem. 55:1361A–1387A (1988).

    Google Scholar 

  19. C. Pidgeon, G. Apostol, and R. Markovich. Fourier transform infrared assay of liposomal lipids. Anal. Biochem. 181:28–32 (1989).

    Google Scholar 

  20. R. N. Jones, R. Venkataraghavan, and J. W. Hopkins. The control of errors in infrared spectrophotometry. I. The reduction of finite spectral slit distortion by the method of “pseudo-deconvolution.” Spectrochim. Acta 23A:925–939 (1967).

    Google Scholar 

  21. R. N. Bracewell. The Fourier Transform and Its Applications, 2nd ed., McGraw-Hill, New York, 1978.

    Google Scholar 

  22. C. Pidgeon and R. J. Markovich. Formation of the antiplanar-antiplanar phosphate conformation of dilauroylphosphatidylcholine bilayers. Biochim. Biophys. Acta 1029:173–184 (1990).

    Google Scholar 

  23. H. L. Casal and H. H. Mantsch. Polymorphic phase behavior of phospholipid membranes studied by infrared spectroscopy. Biochim. Biophys. Acta 779:381–401 (1984).

    Google Scholar 

  24. P. T. T. Wong and H. H. Mantsch. High-pressure infrared spectroscopic evidence of water binding sites in 1,2-diacyl phospholipids. Chem. Phys. Lipids 46:213–224 (1988).

    Google Scholar 

  25. E. M. Suzuki and W. R. Gresham. Forensic science applications of diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). I. Principles, sampling methods, and advantages. J. Forens. Sci. 31:931–952 (1986).

    Google Scholar 

  26. E. M. Suzuki and W. R. Gresham. Forensic science applications of diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). II. Direct analysis of some tablets, capsule powders, and powders. J. Forens. Sci. 31:1292–1313 (1986).

    Google Scholar 

  27. P. R. Griffiths and M. P. Fuller. Mid-infrared spectrometry of powdered samples. Adv. Infrared Raman Spectrosc. 9:63–129 (1982).

    Google Scholar 

  28. R. J. Markovich. Fourier Transform Infrared Studies of Immobilized and Mobilized Artificial Membranes, Ph.D. dissertation, Purdue University, West Lafayette, Ind., 1990.

  29. R. J. Markovich, J. M. Stevens, and C. Pidgeon. Fourier transform infrared assay of membrane lipids immobilized to silica: Leaching and stability of immobilized artificial membranebonded phases. Anal. Biochem. 182:237–244 (1989).

    Google Scholar 

  30. J. M. Stevens, R. J. Markovich, and C. Pidgeon. Characterization of immobilized artificial membrane HPLC columns using deoxynucleotides as model compounds. Biochromatography 4:192–205 (1989).

    Google Scholar 

  31. R. N. A. H. Lewis and R. N. McElhaney. Subgel phases of n-saturated diacylphosphatidylcholines: A Fourier transform infrared spectroscopic study. Biochemistry 29:7936–7953 (1990).

    Google Scholar 

  32. D. M. Byler and H. Susi. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25:469–487 (1986).

    Google Scholar 

  33. W. K. Surewicz and H. H. Mantsch. New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim. Biophys. Acta 952:115–130 (1988).

    Google Scholar 

  34. M. Jackson, P. I. Haris, and D. Chapman. Fourier transform infrared spectroscopic studies of lipids, polypeptides and proteins. J. Mol. Struct. 214:329–355 (1989).

    Google Scholar 

  35. K. Knutson, R. O. Potts, D. B. Guzek, G. M. Golden, J. E. McKie, W. J. Lambert, and W. I. Higuchi. Macro-and molecular physical-chemical considerations in understanding drug transport in the stratum corneum. J. Control. Release 2:67–87(1985).

    Google Scholar 

  36. T. Kai, V. H. W. Mak, R. O. Potts, and R. H. Guy. Mechanism of percutaneous penetration enhancement: Effect of n-alkanols on the permeability barrier of hairless mouse skin. J. Control. Release 12:103–112 (1990).

    Google Scholar 

  37. V. H. W. Mak, R. O. Potts, and R. H. Guy. Percutaneous penetration enhancement in vivo measured by attenuated total reflectance infrared spectroscopy. Pharm. Res. 7:835–841 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markovich, R.J., Pidgeon, C. Introduction to Fourier Transform Infrared Spectroscopy and Applications in the Pharmaceutical Sciences. Pharm Res 8, 663–675 (1991). https://doi.org/10.1023/A:1015829412658

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015829412658

Navigation