Skip to main content
Log in

Infrared Spectroscopy—Mid-infrared, Near-infrared, and Far-infrared/Terahertz Spectroscopy

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This article aims to overview infrared (IR) spectroscopy. Simultaneously, it outlines mid-infrared (MIR), near-infrared (NIR), and far-infrared (FIR) or terahertz (THz) spectroscopy separately, and compares them in terms of principles, characteristics, advantages, and applications. MIR spectroscopy is the central spectroscopic technique in the IR region, and is mainly concerned with the fundamentals of molecular vibrations. NIR spectroscopy incorporates both electronic and vibrational spectroscopy; however, in this review, I have chiefly discussed vibrational NIR spectroscopy, where bands due to overtones and combination modes appear. FIR or THz spectroscopy contains both vibrational and rotational spectroscopy. However, only vibrational FIR or THz spectroscopy has been discussed in this review. These three spectroscopy cover wide areas in their applications, making it rather difficult to describe these various topics simultaneously. Hence, I have selected three key topics: hydrogen bond studies, applications of quantum chemical calculations, and imaging. The perspective of the three spectroscopy has been discussed in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ozaki (ed.), “Advanced Vibrational Spectroscopy— from Near-infrared to Terahertz’, Anal. Sci., 2007, 23, 763–928.

    Google Scholar 

  2. T. Hasegawa and Y. Ozaki (ed.), “Frontiers of Vibrational Spectroscopy in Analytical Chemistry”, Anal. Sci., 2017, 33, 1–123.

  3. Y. Ozaki, Bull. Chem. Soc. Jpn., 2019, 92, 629.

    Article  CAS  Google Scholar 

  4. P. R. Griffiths and J. A.. de Haseth, “Fourier Transform Infrared Spectroscopy”, 2nd ed., 2007, Wiley Interscience, NJ.

    Book  Google Scholar 

  5. A. A. Christy, Y. Ozaki, and V. G. Gregoriou, “Modern Fourier Transform Infrared Spectroscopy”, 2001, Elsevier, Amsterdam

    Google Scholar 

  6. M. Tasumi (ed.), “Introduction to Experimental Infrared Spectroscopy: Fundamentals and Practical Methods”, 2015, John Wiley & Sons, Chichester, UK.

    Google Scholar 

  7. T. Hasegawa, “Quantitative Infrared Spectroscopy for Understanding of a Condensed Matter”, 2017, Springer, Tokyo.

    Book  Google Scholar 

  8. H. W. Siesler, Y. Ozaki, S. Kawata, and H. M. Heise (ed.), “Near-Infrared Spectroscopy”, 2002, Wiley-VCH, Weinheim

    Google Scholar 

  9. Y. Ozaki, W. F. McClure, and A. A. Christy (ed.), “Near-Infrared Spectroscopy in Food Science and Technology”, 2007, NJ.

    Google Scholar 

  10. Y. Ozaki, Anal. Sci., 2012, 28, 545.

    Article  CAS  PubMed  Google Scholar 

  11. Y. Ozaki, C. W. Huck, S. Tsuchikawa, and S. B. Engelsen (ed.), “Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications”, 2020, Springer, Singapore.

    Google Scholar 

  12. K. D. Moller and W. G. Rothschield, “Far-Infrared Spectroscopy”, 1971, Wiley Interscience, NJ.

    Google Scholar 

  13. A. Finch, “Chemical Applications of Far Infrared Spectroscopy”, 1970, Academic Press, New York.

    Google Scholar 

  14. Y.-S. Lee, “Principle of Terahertz Science and Technology”, 2009, Springer, New York.

    Google Scholar 

  15. S. L. Dexheimer, “Terahertz Spectroscopy: Principles and Applications”, 2008, CRC Press, Boca Raton.

    Google Scholar 

  16. J. B. Baxter and G. W. Guglietta, Anal. Chem., 2011, 83, 4342.

    Article  CAS  PubMed  Google Scholar 

  17. N. Sheppard, “The Historical Development of Experimental Techniques in Vibrational Spectroscopy”, in “Handbook of Vibrational Spectroscopy”, ed. J. M. Chalmers and P. R. Griffiths, 2002, Vol. 1, John Wiley &x Sons, Chichester, 1–32.

    Google Scholar 

  18. L. A. Nafie, “Vibrational Optical Activity, Principles and Applications”, 2011, John Wiley & Sons, Chichester.

    Book  Google Scholar 

  19. C. S. Peng, K. C. Jones, and A. Tokmakoff, J. Am. Chem. Soc., 2011, 133, 15650.

    Article  CAS  PubMed  Google Scholar 

  20. A. T. Krummel and M. T. Zanni, J. Phys. Chem. B, 2006, 110, 13991.

    Article  CAS  PubMed  Google Scholar 

  21. A. T. Krummel, P. Mukherjee, and M. T. Zanni, J. Phys. Chem. B, 2003, 107, 9165.

    Article  CAS  Google Scholar 

  22. C. Prater, K. Kjoller, D. Cook, R. Shetty, G. Meyers, C. Reinhardt, J. Felts, W. King, K. Vodopyanov, and A. Dazzi, Microsc. Anal., 2010, 24, 5.

    Google Scholar 

  23. K. Wieland, G. Ramer, V. U. Weiss, G. Allmaier, B. Lendl, and A. Centrone, Nano Res., 2019, 12, 197.

    Article  CAS  Google Scholar 

  24. R. Salzer and H.W. Siesler, “‘Infrared and Raman Spectroscopic Imaging’. 2nd ed., 2014, Wiley-VCH, Weinheim.

    Book  Google Scholar 

  25. S. Sasic and Y. Ozaki, “Raman, Infrared, and Near-Infrared Chemical Imaging”, 2010, Wiley, NJ.

    Book  Google Scholar 

  26. C. K. Akhgar, G. Ramer, M. Zbik, A. Trajnerowicz, J. Pawluczyk, A. Schwaighofer, and B. Lendl, Anal. Chem., 2020, 92, 9901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. T. Hasegawa and N. Shioya, Bull. Chem. Soc. Jpn., 2020, 93, 1127.

    Article  CAS  Google Scholar 

  28. C. Sandrfy, “The Hydrogen Bond-Recent Development in Theory and Experiments”, 1976, North-Holland

    Google Scholar 

  29. C. Sandrfy, R. Buchet, and G. Lachenal, Ref. 5(b), 11.

  30. W. Kaye, Spectrochim. Acta, 1955, 7, 181.

    CAS  Google Scholar 

  31. O. H. Wheeler, Chem. Rev, 1959, 59, 629.

    Article  CAS  Google Scholar 

  32. S. Cherdkeattikul, Y. Morisawa, and T. Ida, Anal. Sci., 2020, 36, 723.

    Article  CAS  PubMed  Google Scholar 

  33. S.-W. Kuo, “Hydrogen Bonding in Polymeric Materials”, 2018, Wiley-VCH, Weinheim

    Book  Google Scholar 

  34. P. E. Hansen, A. Jezierska, J. J. Panek, and J. Spanget-Larsen, “Theoretical Calculations are a Strong Tool in the Investigation of Strong Intramolecular Hydrogen Bonds” in “Molecular Spectroscopy; A Quantum Chemistry Approach”, ed. Y. Ozaki, M. J. Wojcik, and J. Popp, 2019, Wiley-VCH, Weinheim, 215.

    Chapter  Google Scholar 

  35. M. Saggu, N. M. Levinson, and S. G. Boxer, J. Am. Chem. Soc., 2011, 133, 17414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M. Kazim, L. Guan, A. Chopra, R. Sun, M. A. Siegler, and T. Lectka, J. Org. Chem., 2020, 85, 981.

    Google Scholar 

  37. H. Sato, R. Nakamura, A. Padermshoke, H. Yamaguchi, H. Terauchi, S. Ekgasit, I. Noda, and Y. Ozaki, Macromolecules, 2004, 37, 3764.

    Google Scholar 

  38. H. Sato, R. Murakami, A. Padermshoke, F. Hirose, K. Senda, I. Noda, and Y. Ozaki, Macromolecules, 2004, 37, 7203.

    Article  CAS  Google Scholar 

  39. Y. Hu, J. Zhang, H. Sato, Y. Futami, I. Noda, and Y. Ozaki, Macromolecules, 2006, 39, 3841.

    Article  CAS  Google Scholar 

  40. S. Yamamoto, Y. Morisawa, H. Sato, H. Hoshina, and Y. Ozaki, Phys. Chem. B, 2013, 117, 2180.

    Article  CAS  Google Scholar 

  41. H. Sato, Y. Ando, J. Dybal, T. Iwata, I. Noda, and Y. Ozaki, Macromolecules, 2008, 41, 4305

    Article  CAS  Google Scholar 

  42. H. Sato, Y. Ando, H. Mitomo, and Y. Ozaki, Macromolecules, 2011, 44, 2829.

    Article  CAS  Google Scholar 

  43. H. Matsuura, H. Yoshida, M. Hieda, S. Y. Yamanaka, T. Harada, K. Shin-ya, and K. Ohno, J. Am. Chem. Soc., 2003, 725, 13910

    Google Scholar 

  44. H. Yoshida, T. Harada, T. Murase, K. Ohno, and H. Matsuura, J. Phys. Chem. A, 1997, 101, 1731.

    Google Scholar 

  45. H. Wang and K. Tashiro, Macromolecules, 2016, 49, 581.

    Article  CAS  Google Scholar 

  46. V. Barone (ed.), “Computational Strategies for Spectroscopy: From Small Molecules to Nano Systems”, 2011, Wiley

    Google Scholar 

  47. J. Baker, “Molecular Structure and Vibrational Spectra”, in “Handbook of Computational Chemistry”, ed. J. Leszczynski, 2011, Springer Science and Business Media.

    Google Scholar 

  48. M. J. Wojcik, H. Nakatsuji, B. Kirtman, and Y. Ozaki, (ed.), “Frontiers of Quantum Chemistry”, 2018, Springer Nature, Singapore

    Google Scholar 

  49. Y. Ozaki, M. J. Wojcik, and J. Popp, “Molecular Spectroscopy; A Quantum Chemical Approach”, 2019, Wiley-VCH, Weinheim.

    Book  Google Scholar 

  50. H. Yoshida, K. Takeda, J. Okamura, A. Ehara, and H. Matsuura, J. Phys. Chem. A, 2002, 106, 3580.

    Article  CAS  Google Scholar 

  51. K. B. Beć, J. Grabska, Y. Ozaki, J. P. Hawranek, and C. W. Huck, J. Phys. Chem. A, 2017, 727, 1412

    Google Scholar 

  52. K. B. Beć, J. Grabska, and Y. Ozaki, Ref. 20, 483

  53. K. B. Beć, J. Grabska, Y. Ozaki, J. P. Hawranek, and C. W. Huck, Phys. Chem. A, 2017, 121, 1412.

    Article  Google Scholar 

  54. Y. Ozaki, K. B. Bec, Y. Morisawa, S. Yamamoto, I. Tanabe, C. W. Huck, and T. S. Hofer, Chem. Soc. Rev, 2021, DOI: 101039/d0cs01602k.

    Google Scholar 

  55. S. G. Kazarian and K. L. Chan, Appi. Spectrosc., 2010, 64, 135A.

    Article  CAS  Google Scholar 

  56. H. Lu, S. G. Kazarian, and H. Sato, Macromolecules, 2020, 53, 9074.

    Article  CAS  Google Scholar 

  57. C. G. Kirchler, R. Henn, J. Modi, F. Münzker, T. H. Baumgartner, F. Meischl, A. Kehle, G. K. Bonn, and C. W. Huck, Molecules, 2018, 23, 3072.

    Article  PubMed  PubMed Central  Google Scholar 

  58. M. A. Czarnecki, Y. Morisawa, Y. Futami, and Y. Ozaki, Chem. Rev, 2015, 775, 9707.

    Article  Google Scholar 

  59. Y. Morisawa and A. Suga, Spectrochim. Acta, 2018, 197, 121.

    Article  CAS  Google Scholar 

  60. Y. Futami, Y. Ozaki, Y. Hamada, M. J. Wojcik, and Y. Ozaki, Chem. Phys. Lett., 2009, 482, 320

    Article  CAS  Google Scholar 

  61. Y. Futami, Y. Ozaki, Y. Hamada, M. J. Wojcik, and Y. Ozaki, Phys. Chem. A, 2011, 775, 1194.

    Article  Google Scholar 

  62. T. Gonjo, Y. Futami, Y. Morisawa, M. J. Wojcik, and Y. Ozaki, Phys. Chem. A, 2011, 775, 9845

    Article  Google Scholar 

  63. M. J. Schuler, T. S. Hofer, Y. Morisawa, Y. Futami, C. W. Huck, and Y. Ozaki, Phys. Chem. Chem. Phys., 2020, 22, 13017.

    Article  Google Scholar 

  64. K. Yagi, M. Keceli, and S. J. Hirata, Chem. Phys., 2012, 137, 204118

    Google Scholar 

  65. K. Yagi, in “Molecular Spectroscopy; A Quantum Chemical Approach”, ed. Y. Ozaki, M. J. Wojcik, and J. Popp, 2019, Wiley-VCH, Weinheim, 147–170.

  66. K. B. Beč, J. Grabska, C. W. Huck, and Y. Ozaki, in “Molecular Spectroscopy; A Quantum Chemical Approach”, ed. Y. Ozaki, M. J. Wojcik, and J. Popp, 2019, Wiley-VCH, Weinheim, 353–388.

  67. J. O. Jung and R. B. Gerber, J. Chem. Phys., 1996, 105, 10332.

    Article  CAS  Google Scholar 

  68. D. A. Clabo, W. D. Allen, R. B. Remington, Y. Yamaguchi, and H. F. Schaefer in, Chem. Phys., 1988, 123, 187.

    Article  CAS  Google Scholar 

  69. K. B. Beč Y. Futami, M. J. Wojcik, and Y. Ozaki, Phys. Chem. Chem. Phys., 2016, 18, 13666.

    Article  Google Scholar 

  70. J. Grabska, K. B. Beč, M. Ishigaki, C. W. Huck, and Y. Ozaki, J. Phys. Chem. B, 2018, 722, 6931.

    Article  Google Scholar 

  71. K. B. Beč, Y. Futami, M. J. Wojcik, T. Nakajima, andY. Ozaki, J. Phys. Chem. A, 2016, 120, 6170

    Article  PubMed  Google Scholar 

  72. J. Grabska, K. B. Beč, Y. Ozaki, and C. W. Huck, J. Phys. Chem. A, 2017, 727, 1950

    Article  Google Scholar 

  73. J. Grabska, M. A. Czarnecki, K. B. Beč, andY. Ozaki, J. Phys. Chem. A, 2017, 727, 7925

    Article  Google Scholar 

  74. J. Grabska, M. Ishigaki, K. B. Beč, M. J. Wojcik, and Y. Ozaki, J. Phys. Chem. A, 2017, 727, 3437.

    Article  Google Scholar 

  75. D. Ishikawa, H. Shinzawa, T. Genkawa, and Y. Ozaki, Anal. Sci., 2014, 30, 143.

    Article  CAS  PubMed  Google Scholar 

  76. D. Ishikawa, K. Murayama, K. Awa, T. Genkawa, M. Komiyama, S. G. Kazarian, and Y. Ozaki, Anal. Biochem., 2013, 405, 9401

    CAS  Google Scholar 

  77. D. Ishikawa, T. Nishii, F. Mizuno, H. Sato, S. G. Kazarian, and Y. Ozaki, Appi. Spectrosc., 2013, 67, 1441.

    Article  CAS  Google Scholar 

  78. M. Unger, Y. Ozaki, and H. W. Siesler, Appl. Spectrosc., 2011, 65, 1051.

    Article  CAS  PubMed  Google Scholar 

  79. M. Ishigaki, P. Puangchit, Y. Yasui, A. Ishida, H. Hayashi, Y. Nakayama, H. Taniguchi, I. Ishimaru, and Y. Ozaki, Anal. Chem., 2018, 90, 5217.

    Article  CAS  PubMed  Google Scholar 

  80. M. Ishigaki, Y. Yasui, M. Kajita, and Y. Ozaki, Anal. Chem., 2020, 92, 8133.

    Article  CAS  PubMed  Google Scholar 

  81. M. Ishigaki, S. Kawasaki, D. Ishikawa, and Y. Ozaki, Sci. Rep., 2016, 6, 20066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. M. Ishigaki, T. Nishii, P. Puangchit, Y. Yasui, C. W. Huck, and Y. Ozaki, J. Biophotonics, 2017, 21, 1003.

    Google Scholar 

  83. H. Hoshina, S. Ishii, S. Yamamoto, Y. Morisawa, H. Sato, T. Uchiyama, Y. Ozaki, and C. Otani, IEEE Trans. Terahertz Sci. Technol., 2013, 248.

    Google Scholar 

  84. S. Yamamoto, M. Miyada, H. Sato, H. Hoshina, and Y. Ozaki, J. Phys. Chem. B, 2017, 121, 1128.

    Article  CAS  PubMed  Google Scholar 

  85. C. Funaki, S. Yamamoto, H. Hoshina, Y. Ozaki, and H. Sato, Polymer, 2018, 137, 245.

    Article  CAS  Google Scholar 

  86. D. Mariina, Y. Park, H. Hoshina, Y. Ozaki, Y. M. Jung, and H. Sato, Anal. Sci., 2020, 36, 731.

    Article  Google Scholar 

  87. S. Yamamoto, E. Ohnishi, H. Sato, H. Hoshina, D. Ishikawa, and Y. Ozaki, J. Phys. Chem. B, 2019, 123, 5368.

    Article  CAS  PubMed  Google Scholar 

  88. C. Funaki, T. Toyouchi, H. Hoshina, Y. Ozaki, and H. Sato, Appi. Spectrosc., 2017, 71, 1537.

    Article  CAS  Google Scholar 

  89. H. W. Siesler and K. Holland-Moritz, “Infrared and Raman Spectroscopy of Polymers”, 1980, Marcel Dekker, New York.

    Google Scholar 

  90. K. M. Sprensen, F. van den Berg, and S. B. Engelsen, “Near-Infrared Spectroscopy”, ed. Y. Ozaki, C. Huck, S. Tsuchikawa, and S. B. Engelsen, 2021, Chap. 7, Springer, 127

  91. S. Morita, Anal. Sci., 2020, 36, 107.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiro Ozaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozaki, Y. Infrared Spectroscopy—Mid-infrared, Near-infrared, and Far-infrared/Terahertz Spectroscopy. ANAL. SCI. 37, 1193–1212 (2021). https://doi.org/10.2116/analsci.20R008

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20R008

Keywords

Navigation