Skip to main content
Log in

Atomistic Simulation Methods for Computing the Kinetic Coefficient in Solid-Liquid Systems

  • Published:
Interface Science

Abstract

The kinetic coefficient, μ, is the constant of proportionality between the velocity of a solid-liquid interface and the interface undercooling. The value of μ and its anisotropy are critical parameters in phase field modeling of dendritic solidification. In this paper we review several different molecular dynamics simulation methods which have been proposed to compute the kinetic coefficient. Techniques based on forced velocity simulations, free solidification simulations and fluctuation analyses are discussed and compared. In addition, a model of crystalline growth kinetics due to Broughton, Gilmer and Jackson will be compared with available atomistic simulation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.S. Langer, in Directions in Condensed Matter, edited by G. Grinstein and G. Mazenko (World Scientific, Singapore, 1986), p. 164.

    Google Scholar 

  2. A. Karma and W.-J. Rappel, Phys. Rev. E 57, 4323 (1998).

    Google Scholar 

  3. M. Plapp and A. Karma, Phys. Rev. Lett. 84, 1740 (2000).

    Google Scholar 

  4. N. Provatas, N. Goldenfeld, and J. Dantzig, Phys. Rev. Lett. 80, 3308 (1998).

    Google Scholar 

  5. J.S. Langer, in Chance and Matter, Lectures on the Theory of Pattern Formation, Les Houches, session XLVI, edited by J. Souletie, J. Vannimenus, and R. Stora (North Holland, Amsterdam, 1987), p. 629.

    Google Scholar 

  6. D. Kessler, J. Koplik, and H. Levine, Adv. Phys. 37, 255 (1988).

    Google Scholar 

  7. J.S. Langer, Phys. Rev. A 37, 434 (1986).

    Google Scholar 

  8. E.A. Brener, Sov. Phys. JETP 69, 133 (1989).

    Google Scholar 

  9. E.A. Brener and V.I. Mel'nikov, Adv. Physics 40, 53 (1991).

    Google Scholar 

  10. J. Bragard, A. Karma,Y.H. Lee, andM. Plapp, Interface Science, this volume.

  11. J.J. Hoyt, M. Asta, and A. Karma, Phys. Rev. Lett. 86, 5530 (2001).

    Google Scholar 

  12. A.A. Wheeler, W.J. Boettinger, and G.B. MacFadden, Phys. Rev.A 45, 7424 (1992).

    Google Scholar 

  13. A.A. Wheeler, W.J. Boettinger, and G.B. MacFadden, Phys. Rev.E 47, 1893 (1993).

    Google Scholar 

  14. A.M. Mullis and R.F. Cochrane, Acta Mater. 49, 2205 (2001).

    Google Scholar 

  15. S.R. Coriell and D. Turnbull, Acta Metall. 30, 2135 (1982).

    Google Scholar 

  16. J.Q. Broughton, G.H. Gilmer, and K.A. Jackson, Phys. Rev Lett. 49, 1496 (1982).

    Google Scholar 

  17. E. Burke, J.Q. Broughton, and G.H. Gilmer, J. Chem. Phys. 89, 1030 (1988).

    Google Scholar 

  18. H.A. Wilson, Philos. Mag. 50, 238 (1900).

    Google Scholar 

  19. J. Frenkel, Phys. Z. Sowjetunion 1, 498 (1932).

    Google Scholar 

  20. F.C. Celestini and J.-M. Debierre, Phys. Rev.B 62, 14006 (2000).

    Google Scholar 

  21. M.J. Aziz, J. Appl. Phys. 53, 1158 (1981).

    Google Scholar 

  22. F.C. Celestini, private communication.

  23. J.J. Hoyt, B. Sadigh, M. Asta, and S.M. Foiles, Acta Mater. 47, 3181 (1999).

    Google Scholar 

  24. J.J. Hoyt and M. Asta, Phys. Rev. B, to be published.

  25. M.S. Daw and M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983).

    Google Scholar 

  26. M.S. Daw and M.I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Google Scholar 

  27. M.S. Daw, S.M. Foiles, and M.I. Baskes, Mater. Sci. Rep. 9, 251 (1993).

    Google Scholar 

  28. W.J. Briels and H.L. Tepper, Phys. Rev. Lett. 79, 5074 (1997).

    Google Scholar 

  29. C.J. Tymczak and J.R. Ray, Phys Rev. Lett. 64, 1278 (1990).

    Google Scholar 

  30. K.A. Jackson, in Treatise on Solid State Chemistry, edited by N.B. Hannay (Plenum Press, NY, 1975), Vol. 5, p. 233.

    Google Scholar 

  31. K.A. Jackson, Interface Science, this volume.

  32. H.E.A. Huitema, M.J. Vlot, and J.P. van der Eerden, J. Chem.Phys. 111, 4714 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoyt, J., Asta, M. & Karma, A. Atomistic Simulation Methods for Computing the Kinetic Coefficient in Solid-Liquid Systems. Interface Science 10, 181–189 (2002). https://doi.org/10.1023/A:1015828330917

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015828330917

Navigation