Skip to main content
Log in

The Liposome as a Model Membrane in Correlations of Partitioning with α-Adrenoceptor Agonist Activities

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The apparent partition coefficients of a group of imidazoline α-adrenoceptor agonists in liposome/buffer systems (Km) and in the n-octanol/buffer system (P′) have been compared in quantitative structure–activity relationships (QSAR) employing biological activities and receptor binding affinities. A parabolic relationship between log K m and log P′ was found, and log K m was greater than log P′ for all liposome compositions. In liposomes, log K m decreased in the order, negatively charged > neutral > positively charged. Overall, hyper- and hypotensive activities of these drugs correlated better with log K m than with log P′; however, poor correlations were obtained between partition coefficients and in vitro binding affinities. Linear correlations of log K m with hypotensive activities were obtained with negatively charged liposomes, whereas correlations with hypertensive activities were obtained using positively charged liposomes. Multiple regressions of biological activities with binding affinities showed positive correlations with hypotensive but not hypertensive activities with or without the inclusion of log K m or log P′. Thus, the liposome represents a more selective model membrane system than a bulk oil phase for predicting the biological activities of imidazoline α-adrenoceptor agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. B. M. W. M. Timmermans and P. A. van Zwieten. J. Med. Chem. 20:1636–1644 (1977).

    Google Scholar 

  2. H. S. Boudier, J. de Boer, G. Smeets, E. J. Lien, and J. van Rossum. Life Sci. 17:377–386 (1976).

    Google Scholar 

  3. P. B. M. W. M. Timmermans, A. de Jonge, M. J. M. C. Thoolen, B. Wilffert, H. Batink, and P. A. van Zwieten. J. Med. Chem. 27:495–503 (1984).

    Google Scholar 

  4. A. de Jonge, P. B. M. W. M. Timmermans, and P. A. van Zwieten. Quant. Struct.-Act. Relat. 3:138–143 (1984).

    Google Scholar 

  5. A. Carpy, J. M. Leger, G. Leclerc, N. Decker, B. Rouot, and C. G. Wermuth. Mol. Pharmacol. 21:400–408 (1982).

    Google Scholar 

  6. J. C. Dearden. Environ. Health Perspect. 61:203–228 (1985).

    Google Scholar 

  7. E. J. Lien and P. H. Wang. J. Pharm. Sci. 69:648–650 (1980).

    Google Scholar 

  8. J. A. Rogers and S. S. Davis. Biochim. Biophys. Acta 598:392–404 (1980).

    Google Scholar 

  9. G. V. Betageri and J. A. Rogers. Int. J. Pharm. 36:165–173 (1987).

    Google Scholar 

  10. S. A. Simon, W. L. Stone, and P. Busto-Latorre. Biochim. Biophys. Acta 468:378–388 (1977).

    Google Scholar 

  11. N. H. Anderson, S. S. Davis, M. James, and I. Kojima. J. Pharm. Sci. 72:443–448 (1983).

    Google Scholar 

  12. A. M. S. Ahmed, F. H. Farah, and I. W. Kellaway. Pharm. Res. 2:119–124 (1985).

    Google Scholar 

  13. L. R. de Young and K. A. Dill. Biochemistry 27:5281–5289 (1988).

    Google Scholar 

  14. D. Hadzi and J. Kidric. Spectrosc. Biol. Mol., Proc. Eur. Conf., 1st, Reims, 1985, pp. 277–282.

  15. L. Schweikert and H. J. Roth. Arch. Pharm. (Weinheim) 321:721–724 (1988).

    Google Scholar 

  16. H. G. L. Coster and D. R. Laver. Biochim. Biophys. Acta 861:406–412 (1986).

    Google Scholar 

  17. J. F. Nagle and M. C. Wiener. Biochim. Biophys. Acta 942:1–10 (1988).

    Google Scholar 

  18. G. V. Betageri and J. A. Rogers. Int. J. Pharm. 46:95–102 (1988).

    Google Scholar 

  19. G. V. Betageri and J. A. Rogers. Pharm. Res. 6:399–403 (1989).

    Google Scholar 

  20. R. Neubert, W. Fuerst, and B. Wurschi. Pharmazie 42:102–103 (1987).

    Google Scholar 

  21. H. Miyoshi, H. Maeda, N. Tokutake, and T. Fujita. Bull. Chem. Soc. Jpn. 60:4357–4362 (1987).

    Google Scholar 

  22. J. de Gier. Advances in Inflammation Research, Vol. 1, Raven Press, New York, 1979, pp. 7–17.

    Google Scholar 

  23. R. E. Brown and B. J. Brown. QSAR Des. Bioact. Compd., Prous, Barcelona, 1984, pp. 13–24.

    Google Scholar 

  24. R. R. Ruffolo, Jr. Neurotransm. Recept. 1 (Adrenoceptors Catecholamine Action, Pt. B.), 1983, pp. 1–50.

    Google Scholar 

  25. F. Avbelj and D. Hadzi. Mol. Pharmacol. 27:466–470 (1985).

    Google Scholar 

  26. P. B. M. W. M. Timmermans, A. de Jonge, J. C. A. van Meel, E. Lam, F. P. Slothorst-Grisdijk, and P. A. van Zwieten. J. Med. Chem. 24:502–507 (1981).

    Google Scholar 

  27. P. M. W. M. Timmermans and P. A. van Zwieten. J. Med. Chem. 25:1389–1401 (1982).

    Google Scholar 

  28. P. B. M. W. M. Timmermans and P. A. van Zwieten. Eur. J. Pharmacol. 45:229–236 (1977).

    Google Scholar 

  29. D. Papahadjopoulos and N. Miller. Biochim. Biophys. Acta 135:624–638 (1967).

    Google Scholar 

  30. A. Bondi. J. Phys. Chem. 68:441–451 (1964).

    Google Scholar 

  31. R. J. Summers, B. Jarrot, and W. J. Louis. Eur. J. Pharmacol. 66:233–241 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, Y.W., Rogers, J.A. The Liposome as a Model Membrane in Correlations of Partitioning with α-Adrenoceptor Agonist Activities. Pharm Res 7, 508–512 (1990). https://doi.org/10.1023/A:1015820917453

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015820917453

Navigation