Skip to main content
Log in

Model Calculations of Radiation-Induced Damage in 1-Methyluracil:9-Ethyladenine

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Detailed EPR and ENDOR experiments on the cocrystalline complex of 1-methyluracil:9-Ethyladenine (MUEA) have revealed that the major radiation-induced products observed at 10 K on MU are: MUEA1, a radical formed by net hydrogen abstraction from the N1-CH3 methyl group, MUEA2, the MU radical anion, and MUEA3, the C5 H-addition radical. The following four products were observed on the adenine moiety at 10 K, MUEA4, the N3 protonated adenine anion, MUEA5, the native adenine cation, MUEA6, the amino deprotonated adenine cation, and MUEA7, the C8 H-addition radical formed by net H-addition to C8 of the adenine base. The geometries, energetics, and hyperfine properties of all possible radicals of MU and EA, the native anions and cations, as well as radicals formed via net hydrogen atom abstraction (deprotonated cations) or addition (protonated anions) were investigated theoretically. All systems were optimized using the hybrid Hartree–Fock–density functional theory functional B3LYP, in conjunction with the 6-31G(d,p) basis set of Pople and co-workers. Calculations of the anisotropic hyperfine couplings for all the radicals observed in MUEA are presented and are shown to compare favorably with the experimentally measured hyperfine couplings. The calculated ionizations potentials indicate that EA would be the preferred oxidation site. In MUEA, both the adenine cation and its N4-deprotonated derivative were observed. The calculated electron affinities indicate that MU would be the preferred reduction site. In MUEA radical, MUEA2 is a uracil reduction product, however the protonation state of this radical could not be determined experimentally. Calculations suggest that MUEA2 is actually the C4=O protonated anion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Close, D. M., Radiat. Res. 1993, 135, 1.

    Google Scholar 

  2. Kar, L.; Bernhard, W. A., J. Chem. Phys. 1980, 73, 3625.

    Google Scholar 

  3. Kar, L.; Bernhard, W. A., Radiat. Res. 1983, 93, 232.

    Google Scholar 

  4. Close, D. M.; Sagstuen, E., J. Chem. Phys. 1983, 79, 5292.

    Google Scholar 

  5. Schmidt, J.; Snipes, W., Intern. J. Radiat. Biol. 1967, 13, 101.

    Google Scholar 

  6. Flossmann, W.; Müller, A.; Westhof, E., Intern. J. Radiat. Biol. 1974, 26, 481.

    Google Scholar 

  7. Close, D. M.; Eriksson, L. A.; Hole, E. O.; Sagstuen, E.; Nelson, W. H., J. Phys. Chem. B 2000, 104, 9343.

    Google Scholar 

  8. Sagstuen, E.; Hole, E. O.; Nelson, W. H.; Close, D. M., Radiat. Res. 1998, 149, 102.

    Google Scholar 

  9. Sagstuen, E.; Hole, E. O.; Nelson, W. H.; Close, D. M., Radiat. Res. 1996, 146, 425.

    Google Scholar 

  10. Mathews, F. S.; Rich, A., J. Mol. Biol. 1964, 8, 89.

    Google Scholar 

  11. Hoogsteen, K., Acta Crystallogr. 1963, 16, 907.

    Google Scholar 

  12. Becke, A. D., J. Chem. Phys. 1993, 98, 5648.

    Google Scholar 

  13. Devlin, P. J.; Chabloski, C. F.; Frisch, M. J., J. Phys. Chem. 1994, 98, 11623.

    Google Scholar 

  14. Lee, C.; Yang, W.; Parr, R. G., Phys. Rev. B 1988, 37, 785.

    Google Scholar 

  15. Krishnan, R.; Binkley, J. S.; Pople, J. A., J. Chem. Phys. 1980, 72, 650.

    Google Scholar 

  16. McLean, A. D.; Chandler, G. S., J. Chem. Phys. 1980, 72, 5639.

    Google Scholar 

  17. Frisch, M. J.; Binkley, J. S.; Pople, J. A., J. Chem. Phys. 1984, 80, 3265.

    Google Scholar 

  18. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, G.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. A.; Pople, J. A., GAUSSIAN 98 (Revision A.6); Gaussian, Inc., Pittsburgh PA, 1998.

  19. Wetmore, S. D.; Boyd, R. J.; Eriksson, L. A., J. Phys. Chem. B 1998, 102, 5369.

    Google Scholar 

  20. Lassmann, G.; Eriksson, L. A.; Himo, F.; Lendzian, F.; Lubitz, W., J. Phys. Chem. A 1999, 103, 1283.

    Google Scholar 

  21. Llano, J.; Eriksson, L. A., J. Phys. Chem. B 1999, 103, 5598.

    Google Scholar 

  22. Malkin, V.; Malkina, G. O. L.; Eriksson, L. A.; Salahub, D. R., in Modern Density Functional Theory: A Tool for Chemistry, J.M. Seminario and P. Politzer, Eds.; Amsterdam: Elsevier, 1995; pp. 273.

    Google Scholar 

  23. Barone, V., in Recent Advances in Density Functional Methods, D. P. Chong, Ed.; Singapore: World Scientific, 1995; pp. 287.

    Google Scholar 

  24. Wetmore, S. D.; Himo, F.; Boyd, R. J.; Eriksson, L. A., J. Phys. Chem. 1998, 102, 7484.

    Google Scholar 

  25. Wetmore, S. D.; Boyd, R. J.; Eriksson, L. A., J. Phys. Chem. 1998, 102, 10602.

    Google Scholar 

  26. Herak, J. N.; McDowell, C. A., J. Chem. Phys. 1974, 61, 1129.

    Google Scholar 

  27. Nelson, W. H.; Sagstuen, E.; Hole, E. O.; Close, D. M., Radiat. Res. 1992, 131, 272.

    Google Scholar 

  28. Close, D. M.; Nelson, W. H., Radiat. Res. 1989, 117, 367.

    Google Scholar 

  29. Steenken, S., Free Radiat. Res. Commun. 1992, 16, 349.

    Google Scholar 

  30. Steenken, S.; Telo, J. P.; Novais, H. M.; Candeias, L. P., J. Amer. Chem. Soc. 1992, 114, 4701.

    Google Scholar 

  31. Shragge, P. C.; Varghese, A. J.; Hunt, J. W.; Greenstock, C. L., Radiat. Res. 1974, 60, 250.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Close, D. Model Calculations of Radiation-Induced Damage in 1-Methyluracil:9-Ethyladenine. Structural Chemistry 13, 203–209 (2002). https://doi.org/10.1023/A:1015716918062

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015716918062

Navigation