Skip to main content
Log in

An NMR Study of the Spatial Structure and Intramolecular Dynamics of Modified Analogues of Steroid Hormones

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Special features of the use of homo- and heteronuclear correlation methods of NMR in one and two dimensions for studying the spatial structure and intramolecular dynamics of modified analogues of steroid hormones (MASH) are considered. The application of these methods to the assignment of resonances in the high-field 1H NMR region and to the determination of the most stereospecifically important parameters, such as the vicinal constants of spin–spin coupling (3 J H–H) and nuclear Overhauser effects (NOE), are discussed using the example of NMR studies of some estrogens and androgens at 300 MHz and on the basis of literature data. The most efficient combination of the methods and the necessary modification of each of them may be chosen considering the spectral and relaxation parameters of MASH in liquid medium, including the anisotropy of the overall diffusive motion. The characteristics of MASH are the wide use of correlations through long-range couplings (COSY-45 and DQF-COSY), the application of the 4,5 J H–H constants for the determination of spatial structure, and the advantage of heteronuclear HSQC methods with and without 13C decoupling over the corresponding HMQC methods in both resolution and sensitivity. In the conformationally rigid MASH molecules, the anisotropy of the MASH diffusive motion in liquid adversely affects the determination of interproton distances by the calibrating processing method for the NOE difference and NOESY spectra: it results in both overestimated and underestimated distance values depending on the polar angle ratios of the reference and the determined distances. Under certain conditions, conformationally mobile MASH demonstrate the additional contribution of the scalar relaxation mechanism between the indirectly (scalarly) bound protons. This mechanism is responsible for the underestimated values of NOE and the corresponding errors in the distance determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Macgregor, J.I. and Jordan, V.V., Pharmacol. Rev., 1998, vol. 50, pp. 151–196.

    Google Scholar 

  2. Green, S. and Furr, B., Endocrine–Related Cancer, 1999, vol. 6, pp. 349–371.

    Google Scholar 

  3. Gambineri, A. and Pasquali, R., J. Endocrinol. Invest., 2000, vol. 23, pp. 196–214.

    Google Scholar 

  4. Labrie, F., Luu–The, V., Lin, S.X., Simard, J., Labrie, C., Al–Alfy, M., Pelletier, G., and Belanger, A., Mol. Endocrinol., 2000, vol. 5, pp. 1–16.

    Google Scholar 

  5. Bulun, S.E., Zeitoun, K.M., Takayama, K., Simpson, E., and Sasano, H., TEM, 2000, vol. 11, pp. 22–27.

    Google Scholar 

  6. US Patent 5554601 (1996), Chem. Abstr., 1996, vol. 125, 294029c.

  7. PCT Int. Appl. WO 98/22113.

  8. Purohit, A., Woo, L.W.L., Potter, B.V.L., and Reed, M.J., Cancer Res., 2000, vol. 60, pp. 3394–3396.

    Google Scholar 

  9. Gutowsky, H.S., Karplus, M., and Grant, D.M., J. Chem. Phys., 1959, vol. 31, pp. 1278–1289.

    Google Scholar 

  10. Samitov, Yu.Yu., Stereospetsifichnost' konstant yadernogo spin–spinovogo vzaimodeistviya i konformatsionnyi analiz (Stereospecificity of Constants of Nuclear Spin–Spin Interaction and Conformation Analysis), Kazan: Kazansk. Univ., 1990.

    Google Scholar 

  11. Matsumory, N., Kaneno, D., Murata, M., Nakamura, H., and Tashibana, K., J. Org. Chem., 1999, vol. 64, pp. 866–876.

    Google Scholar 

  12. Neuhaus, D. and Williamson, M.P., The Nuclear Overhauser Effect in Structural and Conformational Analysis, New York: VCH Publishers, Inc., 1989.

    Google Scholar 

  13. Wittstruck, T.A. and Williams, K.I.H., J. Org. Chem., 1973, vol. 38, pp. 1542–1548.

    Google Scholar 

  14. Terasava, T., Yoshimura, Y., and Tori, K., J. Chem. Soc., Perkin Trans. 1, 1983, pp. 903–908.

  15. Batsanov, A., Chen, L., Gill, G.B., and Pattenden, G., J. Chem. Soc., Perkin Trans. 1, 1996, pp. 45–55.

  16. Ernst, R.R., Angew. Chem., Int. Ed. Engl., 1992, vol. 31, pp. 805–830.

    Google Scholar 

  17. Eberstadt, M., Gemmechker, G., Mierke, D.G., and Kessler, H., Angew. Chem., Int. Ed. Engl., 1995, vol. 34, pp. 1671–1695.

    Google Scholar 

  18. Ernst, R.R., Bodenhausen, G., and Wokaun, A., Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Oxford: Clarendon, 1987.

    Google Scholar 

  19. Fujiwara, N., Da, Y.–Z., Zheng, D., Sasaki, Y., Takai, Y., and Sawada, M., J. Chem. Soc., Perkin Trans. 2, 1990, pp. 97–101.

  20. Levy, G.C., Kumar, A., and Wang, D., J. Am. Chem. Soc., 1983, vol. 105, pp. 7536–7540.

    Google Scholar 

  21. Quinn, D.M., Biochemistry, 1982, vol. 21, pp. 3548–3555.

    Google Scholar 

  22. Marat, K., Templeton, J.F., and Kumar, V.P.S., Magn. Reson. Chem., 1987, vol. 25, pp. 25–30.

    Google Scholar 

  23. Sridharan, R., Desai, U.R., Rao, R.M., and Trivedi, G.K., Steroids, 1983, vol. 58, pp. 170–177.

    Google Scholar 

  24. Sebag, A.B., Friel, C.J., Hanson, R.N., and Forsyth, D.A., J. Org. Chem., 2000, vol. 65, pp. 7902–7919.

    Google Scholar 

  25. Schonecker, B., Lange, C., Kotteritzsch, M., Gunther, W., Weston, J., Anders, E., and Gorls, H., J. Org. Chem., 2000, vol. 65, pp. 5487–5497.

    Google Scholar 

  26. Ruter, C., Schroder, E., and Gibian, A., Liebigs Ann. Chem., 1967, vol. 705, pp. 211–226.

    Google Scholar 

  27. Stein, R.P., Buzby, G.C., and Smith, H., Tetrahedron, 1970, vol. 26, pp. 1917–1933.

    Google Scholar 

  28. Hayamizu, K., Ishii, T., Yanagisava, M., and Kamo, O., Magn. Reson. Chem., 1990, vol. 28, pp. 250–256.

    Google Scholar 

  29. Zeng, B., Pollack, R., and Summers, M.F., J. Org. Chem., 1990, vol. 55, pp. 2534–2536.

    Google Scholar 

  30. Szedi, Z., Forgo, P., and Sweet, F., Steroids, 1995, vol. 60, pp. 442–446.

    Google Scholar 

  31. Egorov, M.S., Zorina, A.D., Balykina, L.V., Selivanov, S.I., and Shavva, A.G., Vestn. St. Petersburg. Gos. Univ., 2000, Ser. 4, issue 4, pp. 99–105.

  32. Platzer, N., Goasdoue, N., and Dovoust, D., Magn. Reson. Chem., 1987, vol. 25, pp. 311–316.

    Google Scholar 

  33. Schröder, H. and Haslinger, E., Magn. Reson. Chem., 1994, vol. 32, pp. 12–15.

    Google Scholar 

  34. Rance, M., Sorensen, O.W., Bodenhausen, G., Wagner, C., and Ernst, R.R., Biochem. Biophys. Res. Commun., 1983, vol. 117, pp. 479–485.

    Google Scholar 

  35. Bodenhausen, G. and Ruben, D.J., Chem. Phys. Lett., 1980, vol. 69, pp. 185–189.

    Google Scholar 

  36. Bax, A. and Subramanian, S., J. Magn. Reson., 1986, vol. 67, pp. 565–572.

    Google Scholar 

  37. Kessler, H., Griesinger, C., Zabock, J., and Loosli, H.R., J. Magn. Res., 1984, vol. 57, pp. 331–336.

    Google Scholar 

  38. Bax, A. and Summers, M.F., J. Am. Chem. Soc., 1986, vol. 108, pp. 2093–2094.

    Google Scholar 

  39. Jeener, J., Meier, G.H., Bachman, P., and Ernst, R.R., J. Chem. Phys., 1979, vol. 71, pp. 4546–4553.

    Google Scholar 

  40. Latypov, Sh.K., Design of Chiral Derivatizing Reagents for the Determination of Absolute Configuration of Organic Compounds by NMR, Dr. Sci. (Chem.) Dissertation, Kazan: Arbuzov Inst. of General and Physical Chemistry, Kazan National Center, RAS, 1999, pp. 17–18.

    Google Scholar 

  41. Imai, K. and Osawa, E., Tetrahedron Lett., 1989, vol. 30, pp. 4251–4254.

    Google Scholar 

  42. Barfield, M., Dean, A.M., Fallick, C.J., Spear, R.J., Sternhell, S., and Westerman, P.W., J. Am. Chem. Soc., 1975, vol. 97, pp. 1482–1485.

    Google Scholar 

  43. Waterhause, A.L., Magn. Reson. Chem., 1989, vol. 27, pp. 37–43.

    Google Scholar 

  44. Reynolds, W.F., McLean, S., Tay, L.–L., Yu, M., Enriquez, R.G., Estwick, D.M., and Pascoe, K.O., Magn. Reson. Chem., 1997, vol. 35, pp. 455–462.

    Google Scholar 

  45. Simova, S., Sengstschmid, H., and Freeman, R., J. Magn. Res., 1997, vol. 124, pp. 104–111.

    Google Scholar 

  46. Simova, S., Magn. Reson. Chem., 1998, vol. 36, pp. 505–510.

    Google Scholar 

  47. Bodenhausen, G., Multiple Quantum NMR: Progress in NMR Spectroscopy, Emsley, J.W., Feeney, J., and Sutcliff, G., Eds., Oxford: Pergamon, 1982, vol. 14, pp. 137–173.

    Google Scholar 

  48. Andersen, N.H., Eaton, H.L., and Lai, X., Magn. Reson. Chem., 1989, vol. 27, pp. 515–528.

    Google Scholar 

  49. Genest, D. and Simorre, J.P., Magn. Reson. Chem., 1990, vol. 28, pp. 21–24.

    Google Scholar 

  50. Woessner, D.E., J. Chem. Phys., 1962, vol. 36, pp. 1–4.

    Google Scholar 

  51. Woessner, D.E., J. Chem. Phys., 1962, vol. 36, pp. 647–554.

    Google Scholar 

  52. Withka, J.M., Swaminathan, S., and Bolton, P.H., J. Magn. Reson., 1990, vol. 89, pp. 386–390.

    Google Scholar 

  53. Maes, D., Cauteren, M.V., Wyns, L., Lisgarten, J., Palmer, R., Lisgarten, D., Willem, R., Biesemans, M., and Kayser, F., J. Chem. Soc., Perkin Trans. 2, 1992, pp. 2179–2185.

  54. Balonga, P.E., J. Magn. Reson., 1984, vol. 59, pp. 50–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selivanov, S.I., Shavva, A.G. An NMR Study of the Spatial Structure and Intramolecular Dynamics of Modified Analogues of Steroid Hormones. Russian Journal of Bioorganic Chemistry 28, 194–208 (2002). https://doi.org/10.1023/A:1015704203799

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015704203799

Navigation