Skip to main content
Log in

Prediction of Critical Desalination Parameters Using Radial Basis Functions Networks

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

Prediction of critical desalination parameters (recovery and salt rejection) of two distinct processes based on real operational data is presented. The proposed method utilizes the radial basis function network using data clustering and histogram equalization. The scheme involves center selection and shape adjustment of the localized receptive fields. This algorithm causes each group of radial basis functions to adapt to regions of the clustered input space. Networks produced by the proposed algorithm have good generalization performance on prediction of non-linear input–output mappings and require a small number of connecting weights. The proposed method was used for the prediction of two different critical parameters for two distinct Reverse Osmosis (RO) plants. The simulation results indeed confirm the effectiveness of the proposed prediction method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Shayji, K. and Liu, Y. A.: Neural networks for predictive modeling and optimization of large-scale commercial water desalination plants, in: Proc. of the IDA World Congress on Desalination and Reuse, Centro de Estodios y Experimentacion de Obras Publicas, Madrid, Spain, 1997.

    Google Scholar 

  2. Barrett, A.: Computer Vision and Image Processing, Chapman and Hall, 1991.

  3. Darwish, M. A., Abdel Jawad, M., and Aly, G. S.: Technical and economical comparison between large capacity MSF and RO desalting plants, in: Proc. of the Fourth World Congress on Desalination and Water Reuse, Kuwait City, Kuwait, 1989.

  4. Dave, R. and Kirshnapuram, R.: Robust clustering methods: A unified view, IEEE Trans. Fuzzy Systems 5(2) (1997), 270–293.

    Google Scholar 

  5. Duda, R. and Hart, P.: Pattern Classification and Scene Analysis, Wiley, 1973.

  6. Ebrahim, S. and Abdel-Jawad, M.: Economics of seawater desalination by reverse osmosis, Desalination 99 (1994), 39–55.

    Google Scholar 

  7. El-Hawary, M. E.: Artificial neural networks and possible applications to desalination, Desalination 92 (1993), 125.

    Google Scholar 

  8. FILMTECH FT30 Technical Manual on Membrane Technology, The DOW Chemical Co., 1997.

  9. Gonzalez, R. C. and Wintz, P.: Digital Image Processing, Addison-Wesley, 1987.

  10. Hanbury, W. T., Hodgkeiss, T., and Morris, R.: Desalination Technology, Porthan Limited, Glasgow, UK, 1993.

    Google Scholar 

  11. Jafar, M. and Abdel-Jawad, M.: Design, implementation, and evaluation of a fully automated reverse osmosis plant, Desalination and Water Reuse 8(3) (1998), 18–19. 230 M. M. JAFAR AND A. ZILOUCHIAN

    Google Scholar 

  12. Jafar, M., Zilouchian, A., Ebrahim, S., and Safar, M.: Design and evaluation of an intelligent control methodology for reverse osmosis plants, in: Proceedings of the American Desalting Association, Williamsburg, VA, 1998.

  13. Jang, J. S., Sun, C. T., and Mizutani, E.: Neuro-Fuzzy and Soft Computing, Prentice-Hall, New York, 1997.

    Google Scholar 

  14. Lasdon, L., Plummer, J., and Waren, A. D.: Non-linear programming: Mathematical programming for industrial engineers, Industrial Engineering 20 (1996), 385–485.

    Google Scholar 

  15. Lee, S. and Kill, R. M.: A Gaussian potential function network with hierarchically selforganizing learning, Neural Networks 4(2) (1991), 207–224.

    Google Scholar 

  16. Leitner, G. F.: Economic feasibility of the reverse osmosis process for seawater desalination, Desalination 63 (1987), 135–142.

    Google Scholar 

  17. Ljung, L.: System Identification Theory for the User, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1987.

    Google Scholar 

  18. Lowe, D.: Adaptive radial basis function non-linearities and the problem of generalization, in: Proc. of the 1st IEEE Internat. Conf. on Artificial Networks, London, UK, 1989.

  19. Matlab Neural Networks Toolbox, version 3, The Mathworks Inc., 1999.

  20. Moody, J. and Darken, C.: Learning with localized receptive fields, in: D. Touretzky, G. Hinton and T. Sejnowski (eds), Proc. of the Connectionist Models Summer School, Carnegie Mellon University, San Mateo, CA, 1988, Morgan Kaufmann, 1988.

  21. Moody, J. and Darken, C.: Fast learning in networks of locally-tuned processing units, Neural Computation 1 (1989), 281–294.

    Google Scholar 

  22. Nguyen, D. and Widrow, B.: Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights, in: Proc. of the Internat. Joint Conf. on Neural Networks, Vol. 3, 1990, pp. 21–26.

    Google Scholar 

  23. Nowlan, S. J.: Maximum likelihood competitive learning, in: D. J. Touretzky (ed.), Advances in Neural Information Processing Systems 2, San Mateo, CA, 1989, pp. 574–582.

  24. Parenti, R., Bogi, S., and Massarani, A.: Industrial application of real time neural networks in multistage desalination plant, in: Proc. of the IDA World Congress on Desalination and Water Sciences, Abu Dhabi Printing &; Publishing Co., Abu Dhabi, United Arab Emirates, 1995.

    Google Scholar 

  25. Rumelhart, D. E., Hinton, G. E., and Williarns, R. J.: Learning internal representations by error propagation, in: Parallel Data Processing, Vol. 1, Chapter 8, the MIT Press, Cambridge, MA, 1986, pp. 318–362.

    Google Scholar 

  26. Selvaragi, R. and Deshpande, P. B.: Neural networks for the identification of MSF desalination plants, Desalination 101 (1995), 185.

    Google Scholar 

  27. Specht, D. F.: A general regression neural network, IEEE Trans. Neural Networks 2(6) (1991), 568–576.

    Google Scholar 

  28. Taylor, F. J.: Digital Filters Design Handbook, Marcel Dekker, Inc., New York, 1983.

    Google Scholar 

  29. Wasserman, P. D.: Advanced Methods in Neural Computing, Van Nostrand Reinhold, New York, 1993.

    Google Scholar 

  30. Wettschereck, D. and Dietterich, T.: Improving the performance of radial basis function networks by learning center locations, in: Bruce Spatz (ed.), Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1992, pp. 1133–1140.

    Google Scholar 

  31. World Water Vision, commission report, February 2000.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mutaz M. Jafar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafar, M.M., Zilouchian, A. Prediction of Critical Desalination Parameters Using Radial Basis Functions Networks. Journal of Intelligent and Robotic Systems 34, 219–230 (2002). https://doi.org/10.1023/A:1015620713975

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015620713975

Navigation