Skip to main content
Log in

Photosynthetic Efficiency of Plants of Brassica Juncea, Treated with Chlorosubstituted Auxins

  • Published:
Photosynthetica

Abstract

The leaves of 29-d-old plants of Brassica juncea Czern & Coss cv. Varuna were sprayed with 10−6 or 10−8 M aqueous solutions of indole-3-yl-acetic acid (IAA) or its substituted derivatives 4-Cl-IAA, 7-Cl-IAA, and 4,7-Cl2-IAA. All the auxins improved the vegetative growth and seed yield at harvest compared with those sprayed with de-ionised water (control). 4-Cl-IAA was most prominent in its effect, generating 21.6, 39.7, 61.0, 35.0, 65.5, and 56.2% higher values for dry mass, leaf chlorophyll content, carbonic anhydrase (E.C. 4.2.1.1) and nitrate reductase (E.C. 1.6.6.1) activities, net photosynthetic rate, and carboxylation efficiency, respectively, in 60-d-old plants. It also enhanced the seed yield by 31.1% over the control. The order of response of the plants to various auxins was 4-Cl IAA ≥ 7-Cl IAA > 4,7-Cl2 IAA = IAA > control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, A.: Nitrate accumulation and nitrate reductase activity during rooting of pea cuttings treated with auxins.-Indian J. exp. Biol. 26: 470-472, 1988.

    Google Scholar 

  • Ahmad, A.: Shoot apex as a source of auxin for nitrate uptake and activity of nitrate reductase in pea cuttings.-Indian J. exp. Biol. 32: 65-67, 1994.

    Google Scholar 

  • Ahmad, A., Andersen, A.S., Engvild, K.: Rooting growth and ethylene evolution of pea cuttings in response to chloroindole auxins.-Physiol. Plant. 69: 137-140, 1987.

    Google Scholar 

  • Ahmad, A., Hayat, S.: Response of nitrate reductase to substituted indole acetic acids in pea seedlings.-In: Srivastava, G.C., Singh, K., Pal, M. (ed.): Plant Physiology for Sustainable Agriculture. Pp. 252-259. Pointer Publishers, Jaipur 1999.

    Google Scholar 

  • Ahmad, A., Hayat, S., Fariduddin, Q., Alvi, S.: Germination and α-amylase activity in the grains of wheat, treated with chloroindole acetic acids.-Seed Technol. 23: 88-91, 2001.

    Google Scholar 

  • Arteca, R.N., Dong, C.-N.: Increased photosynthetic rates following gibberellic acid treatments to the roots of tomato plants.-Photosynth. Res. 2: 243-249, 1981.

    Google Scholar 

  • Chatterjee, A., Mandal, R.K., Sircar, S.M.: Effects of growth substances on productivity, photosynthesis and translocation of rice varieties.-Indian J. Plant Physiol. 19: 131-138, 1976.

    Google Scholar 

  • Crawford, N.M.: Nitrate: Nutrient and signal for plant growth.-Plant Cell 7: 859-868, 1995.

    Google Scholar 

  • Davies, P.J.: The plant hormones: Their nature, occurrence and functions.-In: Davies, P.J. (ed.): Plant Hormones Physiology, Biochemistry and Molecular Biology. 2nd Ed. Pp. 1-12. Kluwer Academic Publ., Dordrecht 1995.

    Google Scholar 

  • Dwivedi, R.S., Randhawa, N.S.: Evaluation of a rapid test for the hidden hunger of zinc in plants.-Plant Soil 40: 445-451, 1974.

    Google Scholar 

  • Edwards, G.E., Mohmed, A.K.: Reduction in carbonic anhydrase activity in zinc deficient leaves of Phaseolus vulgaris L.-Crop Sci. 13: 351-354, 1973.

    Google Scholar 

  • Engvild, K.C.: The Chloroindole Auxins of Pea, Strong Plant Growth Hormones or Endogenous Herbicides?-Riso R. 705 (EN). Riso National Laboratory, Roskilde 1994.

    Google Scholar 

  • Ernstsen, A., Sandberg, G.: Identification of 4-chloroindole-3-acetic acid and indole-3-aldehyde in seeds of Pinus sylvestris.-Physiol. Plant. 68: 511-518, 1986.

    Google Scholar 

  • Gandar, J.C., Nitsch, J.P.: Isolement de lister methylique d'un acids chloro-3-indolylacetique a partir de graines immatures de Pois, Pisum sativum L.-Compt. rend. Acad. Sci. Paris D 265: 1795-1798, 1967.

    Google Scholar 

  • Gomez, K.A., Gomez, A.A.: Statistical Procedures for Agricultural Research.-J. Wiley and Sons, New York 1984.

    Google Scholar 

  • Hayat, S., Ahmad, A., Hussain, A., Mobin, M.: Growth of wheat seedlings raised from the grains treated with 28-homobrassinolide.-Acta Physiol. Plant. 23: 27-30, 2001.

    Google Scholar 

  • Hewitt, E.J., Afridi, M.M.R.K.: Adaptive synthesis of nitrate reductase in higher plants.-Nature 183: 57-59, 1959.

    Google Scholar 

  • Hirasawa, E.: Auxins induce α-amylase activity in pea cotyledons.-Plant Physiol. 91: 484-486, 1989.

    Google Scholar 

  • Jaworski, E.G.: Nitrate reductase assay in intact plant tissue.-Biochem. biophys. Res. Commun. 43: 1274-1279, 1971.

    Google Scholar 

  • Katekar, G.F., Geissler, A.E.: Auxins II. The effect of chlorinated indolylacetic acids on pea stems.-Phytochemistry 21: 257-260, 1982.

    Google Scholar 

  • Knypl, J.S., Krystyna, M.: Light and molybdenum requirements for substrate induction of nitrate reductase in cotyledons of Lactuca sativa.-Biol. Plant. 21: 214-219, 1979.

    Google Scholar 

  • Lawlor, D.W.: The chemistry of photosynthesis.-In: Lawlor, D.W. (ed.): Photosynthesis: Metabolism, Control and Physiology. Pp. 127-157. Longman Singapore Publishers, Singapore 1987.

    Google Scholar 

  • Mackinney, G.: Absorption of light by chlorophyll solutions.-J. biol. Chem. 140: 315-322, 1941.

    Google Scholar 

  • Majeau, N., Coleman, J.R.: Correlation of carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase expression in pea.-Plant Physiol. 104: 1393-1399, 1994.

    Google Scholar 

  • Marumo, S., Hattori, H., Abe, H., Munakata, K.: Isolation of 4-chloroindolyl-3-acetic acid from immature seeds of Pisum sativum.-Nature 219: 959-960, 1968.

    Google Scholar 

  • Marumo, S., Hattori, H., Yamamoto, A.: Biological activity of 4-chloroindolyl-3-acetic acid.-In: Plant Growth Substances. Pp. 419-428. Hirokawa Publication Co., 1974.

  • Menon, K.K.G., Srivastava, H.C.: Increasing plant productivity through improved photosynthesis.-Proc. indian Acad. Sci. (Plant Sci.) 93: 359-378, 1984.

    Google Scholar 

  • Ohki, K.: Zinc concentration in soybean as related to growth, photosynthesis, and carbonic anhydrase activity.-Crop Sci. 18: 79-82, 1978.

    Google Scholar 

  • Okabe, K., Lindlar, A., Tsuzuki, M., Miyachi, S.: Effects of carbonic anhydrase on ribulose 1,5-bisphosphate carboxylase and oxygenase.-FEBS Lett. 114: 142-144, 1980.

    Google Scholar 

  • Okabe, K., Yang, S.-Y., Tsuzuki, M., Miyachi, S.: Carbonic anhydrase: its content in spinach leaves and its taxonomic diversity studied with anti-spinach leaf carbonic anhydrase antibody.-Plant Sci. Lett. 33: 145-153, 1984.

    Google Scholar 

  • Pandey, D.M., Goswami, C.L., Kumar, B., Jain, S.: Hormonal regulation of photosynthetic enzymes in cotton under water stress.-Photosynthetica 38: 403-407, 2000.

    Google Scholar 

  • Redinbaugh, M.G., Campbell, H.W.: Higher plants responses to environmental nitrate.-Physiol. Plant. 82: 640-650, 1991.

    Google Scholar 

  • Reed, M.L., Graham, D.: Carbonic anhydrase in plants distribution, properties and possible physiological roles.-Phytochemistry 7: 47-94, 1981.

    Google Scholar 

  • Reinecke, D.M., Ozga, J.A., Ilic, N., Magnus, V., Kojic-Prodic, B.: Molecular properties of 4-substituted indole-3-acetic acids affecting pea pericarp elongation.-Plant Growth Regul. 27: 39-48, 1998.

    Google Scholar 

  • Reinecke, D.M., Ozga, J.A., Magnus, V.: Effect of halogen substitution of indole-3-acetic acid on biological activity in pea fruit.-Phytochemistry 40: 1361-1366, 1995.

    Google Scholar 

  • Roth-Bejerano, N., Lips, S.H.: Hormonal regulation of nitrate reductase activity in leaves.-New Phytol. 69: 165-169, 1970.

    Google Scholar 

  • Scheible, W.R., Gonzales-Fontes, A., Morcuende, R., Lauerer, M., Geiger, M.: Tobacco mutants with a decreased number of functional nia genes compensate by modifying the diurnal regulation of transcription, post-translational modification and turnover of nitrate reductase.-Planta 203: 304-319, 1997a.

    Google Scholar 

  • Scheible, W.R., Gonzales-Fontes, A., Morcuende, R., Lauerer, M., Muller-Rober, B.: Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco.-Plant Cell 9: 783-798, 1997b.

    Google Scholar 

  • Scheible, W.R., Lauerer, M., Schulze, E.D., Caboche, M., Stitt, M.: Accumulation of nitrate in the shoot acts as signal to regulate shoot-root allocation in tobacco.-Plant J. 11: 671-691, 1997c.

    Google Scholar 

  • Schneider, E.A., Kazakoff, C.W., Wightman, F.: Gas chromatography mass spectrometry evidence for several endogenous auxins in pea seedling organs.-Planta 165: 232-241, 1985.

    Google Scholar 

  • Tamas, I.A., Schwartz, J.W., Breithampt, B.J., Hagin, J.M., Arnold, P.H.: Effect of indole acetic acid on photosynthetic reactions in isolated chloroplast.-In: Proceedings of the Eighth International Conference on Plant Growth Substances. Pp. 1159-1168, 1973.

  • Tiwari, H.S., Agarwal, R.M., Bhatt, P.K.: Photosynthesis, stomatal resistance and related characteristics as influenced by potassium under normal water supply and water stress condition in rice.-Indian J. Plant Physiol. 3: 314-316, 1998.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, A., Hayat, S., Fariduddin, Q. et al. Photosynthetic Efficiency of Plants of Brassica Juncea, Treated with Chlorosubstituted Auxins. Photosynthetica 39, 565–568 (2001). https://doi.org/10.1023/A:1015608229741

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015608229741

Navigation