Skip to main content
Log in

Durability of resistance against fungal, bacterial and viral pathogens; present situation

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

In evolutionary sense no resistance lasts forever. The durability of a resistance can be seen as a quantitative trait; resistances may range from not durable at all (ephemeral, or transient) to highly durable. Ephemeral resistance occurs against fungi and bacteria with a narrow host range, specialists. It is characterised by a hypersensitive reaction (HR), major gene inheritance and many resistance genes, which often occur in multiple allelic series and/or complex loci. These resistance genes (alleles) interact in a gene-for-gene way with a virulence genes (alleles) in the pathogen to give an incompatible reaction. The pathogen neutralises the effect of the resistance gene by a loss mutation in the corresponding avirulence allele. The incompatible reaction is not elicited any more and the pathogenicity is restored. The pathogens can afford the loss of many avirulences without loss of fitness. Durable resistance against specialised fungi and bacteria is often quantitative and based upon the additive effects of some to several genes, the resulting resistance being of another nature than the hypersensitive reaction. This quantitative resistance is present to nearly all pathogens at low to fair levels in most commercial cultivars. Durable resistance of a monogenic nature occurs too and is usually of a non-HR type. Resistance against fungi and bacteria with a wide host range, generalists, is usually quantitative and durable. Resistances against viruses are often fairly durable, even if these are based on monogenic, race-specific, HR resistances. The level of specialisation does not seem to be associated with the durability of resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous, 1953–1994. Beschrijvende rassenlijst voor landbouwgewassen no's 28 to 69 (Descriptive cultivar lists of arable crops no's 28 to 69). CPRO-DLO, Wageningen, The Netherlands.

  • Bjor, T. & K. Mulelid, 1991. Differential resistance to tuber late blight in potato cultivars without R-genes. Potato Res 34: 3–8.

    Article  Google Scholar 

  • Black, W., 1970. The nature and inheritance of field resistance to late blight (Phytopththora infestans) in potatoes. Am Potato J 47: 279–288.

    Google Scholar 

  • Boland, G.L., 1994. Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol 16: 93–108.

    Article  Google Scholar 

  • Broers, L.H.M. & Jacobs, Th., 1989. The inheritance of host plant effect on latency period of wheat leaf rust in spring wheat. II. Number of segregating factors and evidence for transgressive segregation in F3 and F5 generations. Euphytica 44: 207–214.

    Article  Google Scholar 

  • Bruehl, G.W., 1983. Nonspecific genetic resistance to soilborne fungi. Phytopathology 73: 948–951.

    Google Scholar 

  • Buiel, A.A.M. & J.E. Parlevliet, 1995. Epidemiology of peanut bud necrosis disease in groundnut in India, pp. 41–46. In: A.A.M. Buiel, J.E. Parlevliet & J.M. Lenné (Eds.), Recent Studies on Peanut Bud Necrosis Disease: Proceedings of a Meeting on 20 March 1995, ICRISAT, Asia Center.

  • Burdon, J.J., 1987. Diseases and Plant Population Biology. Cambridge studies in ecology. Cambridge Univ. Press, Cambridge, New York and Melbourne. 208 pp.

    Google Scholar 

  • Danial, D.L., R.W. Stubbs & J.E. Parlevliet, 1994. Evolution of virulence patterns in yellow rust races and its implications for breeding for resistance in wheat in Kenya. Euphytica 80: 165–170.

    Article  Google Scholar 

  • Ehrlich, P.R. & P.H. Raven, 1964. Butterflies and plants: A study in coevolution. Evolution 18: 586–608.

    Article  Google Scholar 

  • Finlay, K.W., 1953. Inheritance of spotted wilt resistance in the tomato. II. Five genes controlling spotted wilt resistance in four tomato types. Austr J Biol Sci 6: 153–163.

    CAS  Google Scholar 

  • Fraser, R.S.S., 1990. The genetics of resistance to plant viruses. Annu Rev Phytopath 28: 179–200.

    Article  Google Scholar 

  • Gendloff, E.H., E.C. Rossman, W.L. Casale, T.G. Isleib & L.P. Hart, 1986. Components of resistance to fusarium ear rot in field corn. Phytopathology 76: 684–688.

    Google Scholar 

  • Habgood, R.M., 1974. The inheritance to Rhynchosporium secalis in some European spring barley cultivars. Ann Appl Biol 77: 191–200.

    Article  Google Scholar 

  • Habgood, R.M., 1976. Differential aggressiveness to Rhynchosporium secalis isolates towards specified barley genotypes. Trans Br Mycol Soc 66: 201–204.

    Article  Google Scholar 

  • Islam, M.R. & Shepherd, K.W. 1991. Present status of genetics of resistance in flax. Euphytica 55: 255–267.

    Article  Google Scholar 

  • Johnson, R., 1981. Durable resistance: Definition of, genetic control, and attainment in plant breeding. Phytopathology 71: 567–568.

    Google Scholar 

  • Joosten, M.H.A.J., T.J. Cozijnsen & P.J.G.M. de Wit, 1994. Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Nature 367: 384–385.

    Article  PubMed  CAS  Google Scholar 

  • Joosten, M.H.A.J. & P.J.G.M. de Wit, 1999. The tomato-Cladosporium fulvum interaction: A versatile experimental system to study plant-pathogen interactions. Annu Rev Phytopath 37: 335–367.

    Article  CAS  Google Scholar 

  • Kim, S.K. & J.L. Brewbaker, 1977. Inheritance of general resistance in maize to Puccinia sorghi Schw. Crop Sci 17: 456–461.

    Article  Google Scholar 

  • Knott, D.R., 1988. Using polygenic resistance to breed for stem rust resistance in wheat. In: N.W. Simmonds & S. Rajaram, (Eds.), Breeding Strategies for Resistance to the Rusts of Wheat, pp. 39–47. CIMMYT, Mexico.

    Google Scholar 

  • Koch, M.F. & J.E. Parlevliet, 1991. Genetic analysis of, and selection for, factors affecting quantitative resistance to Xanthomonas campestris pv oryzae in rice. Euphytica 53: 235–245.

    Article  Google Scholar 

  • Kolmer, J.A. & K.J. Leonard, 1986. Genetic selection and adaptation of Cochliobolus heterostrophus to corn hosts with partial resistance. Phytopathology 76: 774–777.

    Google Scholar 

  • Kuhn, R.C., H.W. Ohm & G.E. Shaner, 1978. Slow leaf rusting resistance in wheat agains twenty-two isolates of Puccinia recondita. Phytopathology 68: 651–656.

    Article  Google Scholar 

  • Leonard, K.J., 1993. Durable resistance in the pathosystems: maize-Northern and Southern leaf blights. In: Th. Jacobs & J.E. Parlevliet (Eds.), Durability of Disease Resistance, pp. 99–114.

  • Kluwer Academic Publishers, Dordrecht, The Netherlands. Masirevic, S. & T.J. Gulya, 1992. Sclerotinia and Phomopsis - two devastating sunflower pathogens. Field crops Res 30: 271–300.

    Article  Google Scholar 

  • Meiners, J.P., 1981. Genetics of disease resistance in edible legumes. Annu Rev Phytopathol 19: 189–209.

    Article  Google Scholar 

  • Mesterhazy, A., 1989. Progress in breeding wheat and corn genotypes not susc. to infection by fusaria. In: J. Chelkowski (Ed.), Fusarium, Mycotoxins, taxonomy and pathogenicity, pp. 357–386. Elsevier, Amsterdam.

    Google Scholar 

  • Moerschbacher, B.M. & H.J. Reisener, 1997. The hypersensitive resistance reaction. In: H. Hartleb, R. Heitefuss & H.H. Hoppe (Eds.), Resistance of crop plants against fungi, pp. 126–158.

  • Gustav Fischer, Jean, Stuttgart, Lübeck and Ulm, Germany. Mündel, H.H., H.C. Huang & G.C. Kozub, 1985. Sclerotinia head rot in safflower: Assessment and effects on yield and oil content. Can J Plant Sci 65: 259–265.

    Article  Google Scholar 

  • Nimchuk, Z., L. Rohmer, J.H. Chang & J.L. Dangl, 2001. Knowing the dancer from the dance: R-gene products and their interactions with other proteins from host ans pathogen. Curr Opinion in Plant Biol 4: 288–294.

    Article  CAS  Google Scholar 

  • Nelson, R.R., A.L. Robert & G.F. Sprague, 1965. Evaluating genetic potentials in Helminthosporium turcicum. Phytopathology 55: 418–420.

    Google Scholar 

  • Osbourn, A., 1996. Saponins and plant defence - a soap story. Trends in Plant Sci 1(1): 4–9.

    Article  Google Scholar 

  • Parlevliet, J.E., 1977. Evidence of differential interaction in the polygenic Hordeum vulgare-Puccinia hordei relation during epidemic development. Phytopathology 67: 776–778.

    Article  Google Scholar 

  • Parlevliet, J.E., 1978. Further evidence of polygenic inheritance of partial resistance in barley to leaf rust, Puccinia hordei. Euphytica 27: 369–379.

    Article  Google Scholar 

  • Parlevliet, J.E., 1981a. Race-non-specific disease resistance. In: F.J. Jenkyn & R.T. Plumb (Eds.), Strategies for the Control of Cereal Disease, pp. 47–54. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Parlevliet, J.E., 1981b. Stabilizing selection in crop pathosystems; an empty concept or a reality? Euphytica 30: 256–269.

    Article  Google Scholar 

  • Parlevliet, J.E., 1986. Coevolution of host resistance and pathogen virulence; possible implications for taxonomy. In: A.R. Stone & D.L. Hawksworth (Eds.), Coevolution and Systematics, pp. 19–34. Clarendon Press, Oxford.

    Google Scholar 

  • Parlevliet, J.E., 1989. Identification and evaluation of quantitative resistance. In: K.J. Leonard & W.E. Fry (Eds.), Plant Disease Epidemiology, Vol. 2: Genetics, Resistance and Management, pp. 215–248. McGraw-Hill Publ. Comp., New York.

    Google Scholar 

  • Parlevliet, J.E., 1993. What is durable resistance, a general outline. In: Th. Jacobs & J.E. Parlevliet (Eds.), Durability of Disease Resistance, pp. 23–39. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Parlevliet, J.E., 1996. Reproduction systems of biotrophic and hemibiotrophic fungal leaf pathogens and their consequences for breeding for resistance. Cer Rusts & Powdery Mildews Bull 24(suppl): 71–76.

    Google Scholar 

  • Parlevliet, J.E., 1997. Durable resistance. In: H. Hartleb, R. Heitefuss & H.H. Hoppe (Eds.), Resistance of Crop Plants against Fungi, pp. 238–253. Gustav Fisher, Jena, Germany.

    Google Scholar 

  • Paterson, R.G., S.J. Scott & R.C. Gergerich, 1989. Resistance in two Lycopersicon species to an Arkansas isolate of tomato spotted wilt virus. Euphytica 43: 173–178.

    Article  Google Scholar 

  • Pouget, R., 1990. Histoire de la lutte contre le Phylloxera de la vigne en France (1868-1895). INRA, Paris.

    Google Scholar 

  • Ross, H., 1983. Major and minor genes in breeding virus resistant varieties. In: W.J. Hooker (Ed.), Research for the Potato in the Year 2000, pp. 165–166. CIP, Peru.

    Google Scholar 

  • Roumen, E.C., 1992. Small differential interactions for partial resistance in rice cultivars to virulent isolates of the blast pathogen. Euphytica 64: 143–148.

    Article  Google Scholar 

  • Roumen, E.C., 1994. The inheritance of host plant resistance and its effect on the relative infection efficiency of Magnaporthe grisea in rice cultivars. Theor Appl Genet 89: 489–503.

    Article  Google Scholar 

  • Schaefer, W., 1994. Molecular mechanisms of fungal pathogens to plants. Ann Rev Phytopath 32: 441–477.

    Google Scholar 

  • Singh, R.P., U.S. Singh & K. Kohmoto (Eds.), 1995. Pathogenesis and Host Specificity in Plant Diseases. Vol. III. Viruses & viroids. Elsevier Science, Oxford, UK.

    Google Scholar 

  • Thomas, C.A. & V.L. Blount, 1976. Race D of Phytophthora phaseoli. Plant Dis Reptr 60: 308.

    Google Scholar 

  • Thompson, J.N., 1994. The Coevolutionary Process. The Univ. of Chicago Press, Chicago and London. 376 pp.

    Google Scholar 

  • Turkensteen, L.J., 1993. Durable resistance of potatoes against Phytophthora infestans. In: Th. Jacobs & J.E. Parlevliet (Eds.), Durability of Disease Resistance, pp. 115-124. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Turner, E.M.C., 1953. The nature of oats to the take-all fungus. J Exp Bot 4: 264–271.

    CAS  Google Scholar 

  • Turner, E.M.C., 1961. An enzyme basis for pathogenic specificity in Ophiobolus graminis. J Exp Bot 12: 169–175.

    CAS  Google Scholar 

  • Van der Plank, J.E., 1968. Disease Resistance in Plants. Academic Press, New York. 206 pp.

    Google Scholar 

  • Wahl, I., N. Eshed, A. Segal & Z. Sobel, 1978. Significance of wild relatives of small grains and other wild grasses in cereal powdery mildews. In: D.M. Spencer (Ed.), The Powdery Mildews, pp. 83-0100. Academic Press, London.

    Google Scholar 

  • White, F.F., B. Yang & L.B. Johnson, 2000. Prospects for understanding avirulence function. Current Opinion in Plant Biol 3: 291–296.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parlevliet, J.E. Durability of resistance against fungal, bacterial and viral pathogens; present situation. Euphytica 124, 147–156 (2002). https://doi.org/10.1023/A:1015601731446

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015601731446

Navigation