Skip to main content

Genetics of Fungicide Resistance

  • Chapter
Fungicide Resistance in Plant Pathogens

Abstract

Acquired resistance to fungicides in fungal plant pathogens is a challenge in modern crop protection. Fungi are indeed very able to adapt to changing environmental conditions, such as the introduction of a new fungicide in the agricultural practice. Several genetic mechanisms may underlay fungicide resistance and influence the chance and time of its appearance and spreading in fungal populations. Resistance may be caused by mutations in major genes (monogenic or oligogenic resistance) or in minor genes (polygenic resistance) which may occur in nuclear genes as well as in cytoplasmic genes. They are immediately expressed in haploid fungi, while they may be dominant or recessive in diploid fungi. Allelic variants may cause different levels of resistance and/or different negative pleiotropic effects on the fitness of resistant mutants. The sexual process, where occurring, plays an important role in releasing new recombinant genotypes in fungal populations. Heterokaryosis provides multinucleate fungi with a further mechanism of adaptation. Resistant mutants can be obtained from samples representative of field population of a pathogen or under laboratory conditions through selection of spontaneous mutations or following chemical or physical mutagenesis. Nowadays, molecular tools, such as gene cloning, sequencing, site-directed mutagenesis and gene replacement, make genetic studies on fungicide resistance amenable even in asexual fungi for which classical genetic analysis of meiotic progeny is not feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JB, Sirjusingh C, Ricker N (2004) Haploidy, diploidy and evolution of antifungal drug resistance in Saccharomyces cerevisiae. Genetics 168:1915–1923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Avenot H, Simoneau P, Iacomi-Vasilescu B, Bataillé-Simoneau N (2005) Characterization of mutations in the two-component histidine kinase gene AbNIK1 from Alternaria brassicicola that confer high dicarboximide and phenylpyrrole resistance. Curr Genet 47:234–243

    Article  CAS  PubMed  Google Scholar 

  • Avila-Adame C, Köller W (2003) Characterization of spontaneous mutants of Magnaporthe grisea expressing stable resistance to the Qo-inhibiting fungicide azoxystrobin. Curr Genet 42:332–338

    Article  CAS  PubMed  Google Scholar 

  • Becher R, Hettwer U, Karlovsky P, Deising HB, Wirsel SGR (2010) Adaptation of Fusarium graminearum to tebuconazole yielded descendants diverging for levels of fitness, fungicide resistance, virulence, and mycotoxin production. Phytopathology 100:444–453

    Article  CAS  PubMed  Google Scholar 

  • Bertier L, Leus L, D’hondt L, de Cock AWAM, Höfte M (2013) Host adaptation and speciation through hybridization and polyploidy in Phytophthora. PLoS ONE 8, e85385

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bi Y, Chen L, Cai M, Zhu S, Pang Z, Liu X (2014) Two non-target recessive genes confer resistance to the anti-oomycete microtubule inhibitor zoxamide in Phytophthora capsici. PLoS ONE 9, e89336

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Birky CW Jr (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu Rev Genet 35:125–148

    Article  CAS  PubMed  Google Scholar 

  • Blatter RHE, Brown JKM, Wolfe MS (1998) Genetic control of the resistance of Erysiphe graminis f.sp. hordei to five triazole fungicides. Plant Pathol 47:570–579

    Article  CAS  Google Scholar 

  • Blum M, Gisi U (2008) Inheritance of resistance in Plasmopara viticola. In: Dehne HW, Gisi U, Kuck KH, Russell PE, Lyr H (eds) Modern fungicides and antifungal compounds V, BCPC, DPG, Braunschweig, Germany, pp 101–104

    Google Scholar 

  • Blum M, Waldner M, Gisi U (2010) A single point mutation in the novel PvCesA3 gene confers resistance to the carboxylic acid amide fungicide mandipropamid in Plasmopara viticola. Fungal Genet Biol 47:499–510

    Article  CAS  PubMed  Google Scholar 

  • Blum M, Gamper HA, Waldner M, Sierotzki H, Gisi U (2012) The cellulose synthase 3 (CesA3) gene of oomycetes: structure, phylogeny and influence on sensitivity to carboxylic acid amide (CAA) fungicides. Fungal Biol 116:529–542

    Article  CAS  PubMed  Google Scholar 

  • Borck K, Braymer HD (1974) The genetic analysis of resistance to benomyl in Neurospora crassa. J Gen Microbiol 85:51–56

    Article  CAS  PubMed  Google Scholar 

  • Brent KJ, Hollomon DW (2007a) Fungicide resistance in crop pathogens: how can it be managed? FRAC monograph no. 1. Global Crop Protection Federation, Brussels

    Google Scholar 

  • Brent KJ, Hollomon DW (2007b) Fungicide resistance: the assessment of risk. FRAC monograph no. 2. Global Crop Protection Federation, Brussels

    Google Scholar 

  • Brown AWA (1977) Epilogue: resistance as a factor in pesticide management. In: Mattson WJ (ed) The role or arthropods in forest ecosystems. Proceedings, 15th international congress of entomology, Washington, DC, 19–27 August 1976. Springer, New York

    Google Scholar 

  • Brown JKM, Jessop AC, Thomas S, Rezanoor HN (1992) Genetic control of the response of Erysiphe graminis f.sp. hordei to ethirimol and triadimenol. Plant Pathol 41:126–135

    Article  CAS  Google Scholar 

  • Camps SM, Rijs AJ, Klaassen CH, Meis JF, O’Gorman CM, Dyer PS, Melchers WJ, Verweij PE (2012) Molecular epidemiology of Aspergillus fumigatus isolates harboring the TR34/L98H azole resistance mechanism. J Clin Microbiol 50:2674–2680

    Article  PubMed Central  PubMed  Google Scholar 

  • Catal M, King L, Tumbalam P, Wiriyajitsomboon P, Kirk WW, Adams GC (2010) Heterokaryotic nuclear conditions and a heterogeneous nuclear population are observed by flow cytometry in Phytophthora infestans. Cytometry A 77:769–775

    Article  PubMed  CAS  Google Scholar 

  • Chapeland F, Fritz R, Lanen C, Gredt M, Leroux P (1999) Inheritance and mechanisms of resistance to anilinopyrimidine fungicides in Botrytis cinerea (Botryotinia fuckeliana). Pestic Biochem Physiol 64:85–100

    Article  CAS  Google Scholar 

  • Chin KM, Chavaillaz D, Kaesbohrer M, Staub T, Felsenstein FG (2001) Characterizing resistance risk of Erysiphe graminis f.sp. tritici to strobilurins. Crop Prot 20:87–96

    Article  CAS  Google Scholar 

  • Cookson B (2005) Clinical significance of emergence of bacterial antimicrobial resistance in the hospital environment. J Appl Microbiol 99:989–996

    Article  CAS  PubMed  Google Scholar 

  • Cools HJ, Fraaije BA (2013) Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control. Pest Manag Sci 69:150–155

    Article  CAS  PubMed  Google Scholar 

  • Coplin D (1989) Plasmids and their role in evolution of plant pathogenic bacteria. Annu Rev Phytopathol 27:187–212

    Article  CAS  Google Scholar 

  • Cowen LE, Anderson JB, Kohn LM (2002) Evolution of drug resistance in Candida albicans. Annu Rev Microbiol 56:139–165

    Article  CAS  PubMed  Google Scholar 

  • Crute IR, Harrison JM (1988) Studies on the inheritance of resistance to metalaxyl in Bremia lactucae and on the stability and fitness of field isolates. Plant Pathol 37:231–250

    Article  CAS  Google Scholar 

  • Cui W, Beever RE, Parkes SL, Weeds PL, Templeton MD (2002) An osmosensing histidine kinase mediates dicarboximide fungicide resistance in Botryotinia fuckeliana (Botrytis cinerea). Fungal Genet Biol 36:187–198

    Article  CAS  PubMed  Google Scholar 

  • Davis RH (1966) Mechanisms of inheritance. 2. Heterokaryosis. In: Ainsworth GC, Sussman AS (eds) The fungi, an advanced treatise, vol 2, The fungal organism. Academic Press, New York, pp 567–588

    Google Scholar 

  • De Miccolis Angelini RM, Santomauro A, De Guido MA, Pollastro S, Faretra F (2002) Genetics of anilinopyrimidine-resistance in Botryotinia fuckeliana (Botrytis cinerea). In: Abstract Book of the 6th European Conference on Fungal Genetics, Pisa, Italy, 6–9 April 2002

    Google Scholar 

  • De Guido MA, De Miccolis Angelini RM, Pollastro S, Santomauro A, Faretra F (2007) Selection and genetic analysis of laboratory mutants of Botryotinia fuckeliana resistant to fenhexamid. J Plant Pathol 89:203–210

    Google Scholar 

  • De Miccolis Angelini RM, Habib W, Rotolo C, Pollastro S, Faretra F (2010a) Selection, characterization and genetic analysis of laboratory mutants of Botryotinia fuckeliana (Botrytis cinerea) resistant to the fungicide boscalid. Eur J Plant Pathol 128:185–199

    Article  CAS  Google Scholar 

  • De Miccolis Angelini RM, Rotolo C, Pollastro S, Faretra F (2010b) Phenotypic and molecular characterization of fungicide-resistant field isolates of Botryotinia fuckeliana (Botrytis cinerea). In: Abstracts of the XV international botrytis symposium, Càdiz, Spain, 30 May–4 June 2010

    Google Scholar 

  • De Miccolis Angelini RM, Rotolo C, Masiello M, Pollastro S, Ishii H, Faretra F (2012a) Genetic analysis and molecular characterisation of laboratory and field mutants of Botryotinia fuckeliana (Botrytis cinerea) resistant to QoI fungicides. Pest Manag Sci 68:1231–1240

    Article  PubMed  CAS  Google Scholar 

  • De Miccolis Angelini RM, Pollastro S, Faretra F (2012b) Genetics of fungicide resistance in Botryotinia fuckeliana (Botrytis cinerea). In: Thind TS (ed) Fungicide resistance in crop protection: risk and management. CAB International, Wallingford, pp 237–250

    Chapter  Google Scholar 

  • Delp CJ, Dekker J (1985) Fungicide resistance: definitions and use of terms. Bull OEPP 15:333–335

    Article  Google Scholar 

  • Délye C, Laigret F, Corio-Costet MF (1997) A mutation in the 14 alpha-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Appl Environ Microbiol 63:2966–2970

    PubMed Central  PubMed  Google Scholar 

  • D’Mello JP, Macdonald AM, Postel D, Hunter EA (1997) 3-Acetyl deoxynivalenol production in a strain of Fusarium culmorum insensitive to the fungicide difenoconazole. Mycotoxin Res 13:73–80

    Article  PubMed  Google Scholar 

  • D’Mello JPF, MacDonald AMC, Postel D, Dijksma WTP, Dujardin A, Plactina CM (1998) Pesticide use and mycotoxin production in Fusarium and Aspergillus phytopathogens. Eur J Plant Pathol 104:741–751

    Article  Google Scholar 

  • D’Mello JP, Macdonald AM, Briere L (2000) Mycotoxin production in a carbendazim-resistant strain of Fusarium sporotrichioides. Mycotoxin Res 16:101–111

    Article  PubMed  Google Scholar 

  • Doukas EG, Markoglou AN, Ziogas BN (2008) Biochemical and molecular study of triazole-resistance and its effect on ochratoxin production by Aspergillus ochraceus Wilh. In: Abstracts of the 9th international congress of plant pathology. ICPP, Torino, Italy, 24–29 August 2008. J Plant Pathol 90:S2.319

    Google Scholar 

  • Dry IB, Yuan KH, Hutton DG (2004) Dicarboximide resistance in field isolates of Alternaria alternata is mediated by a mutation in a two-component histidine kinase gene. Fungal Genet Biol 41:102–108

    Article  CAS  PubMed  Google Scholar 

  • Faretra F, Pollastro S (1991) Genetic basis of resistance to benzimidazole and dicarboximide fungicides in Botryotinia fuckeliana (Botrytis cinerea). Mycol Res 95:943–951

    Article  CAS  Google Scholar 

  • Faretra F, Pollastro S (1993a) Genetics of sexual compatibility and resistance to benzimidazole and dicarboximide fungicides in isolates of Botryotinia fuckeliana (Botrytis cinerea) from nine countries. Plant Pathol 42:48–57

    Article  CAS  Google Scholar 

  • Faretra F, Pollastro S (1993b) Isolation, characterization and genetic analysis of laboratory mutants of Botryotinia fuckeliana (Botrytis cinerea) resistant to the phenylpyrrole fungicide CGA 173506. Mycol Res 97:620–624

    Article  CAS  Google Scholar 

  • Fernández-Ortuño D, Torés JA, de Vicente A, Pérez-García A (2008) Mechanisms of resistance to QoI fungicides in phytopathogenic fungi. Int Microbiol 11:1–9

    PubMed  Google Scholar 

  • Fillinger S, Ajouz S, Nicot PC, Leroux P, Bardin M (2012) Functional and structural comparison of pyrrolnitrin- and iprodione-induced modifications in the class III histidine-kinase Bos1 of Botrytis cinerea. PLoS ONE 7, e42520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fillinger S, Leroux P, Auclair C, Barreau C, Al Hajj C, Debieu D (2008) Genetic analysis of fenhexamid-resistant field isolates of the phytopathogenic fungus Botrytis cinerea. Antimicrob Agents Chemother 52:3933–3940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fincham JRS, Day PR, Radford A (1979) Fungal genetics, 4th edn. University of California Press, Berkeley, p 636

    Google Scholar 

  • Georgopoulos SG (1988) Genetics and population dynamics. In: Delp CJ (ed) Fungicide resistance in North America. APS Press, St. Paul, pp 12–13

    Google Scholar 

  • Gisi U (2012) Resistance to carboxylic acid amide (CAA) fungicides and anti-resistance strategies. In: Thind TS (ed) Fungicide resistance in crop protection: risk and management. CAB International, Wallingford, pp 96–103

    Chapter  Google Scholar 

  • Gisi U, Cohen Y (1996) Resistance to phenylamide fungicides: a case study with Phytophthora infestans involving mating type and race structure. Annu Rev Phytopathol 43:549–72

    Article  Google Scholar 

  • Gisi U, Sierotzki H (2008) Fungicide modes of action and resistance in downy mildews. Eur J Plant Pathol 122:157–167

    Article  CAS  Google Scholar 

  • Gisi U, Sierotzki H, Cook A, McCaffery A (2002) Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest Manag Sci 58:859–867

    Article  CAS  PubMed  Google Scholar 

  • Gisi U, Waldner M, Kraus N, Dubuis PH, Sierotzki H (2007) Inheritance of resistance to carboxylic acid amide (CAA) fungicides in Plasmopara viticola. Plant Pathol 56:199–208

    Article  CAS  Google Scholar 

  • Grasso V, Palermo S, Sierotzki H, Garibaldi A, Gisi U (2006) Cytochrome b gene structure and consequences for resistance to Qo inhibitor fungicides in plant pathogens. Pest Manag Sci 62:465–472

    Article  CAS  PubMed  Google Scholar 

  • Griffiths AJF (1996) Mitochondrial inheritance in filamentous fungi. J Genet 75:403–414

    Article  CAS  Google Scholar 

  • Grindle M (1987) Genetics of fungicide resistance. In: Ford MG, Hollomon DH, Khambay BPS, Sawiki RM (eds) Combating resistance to xenobiotics – biological and chemical approaches. Ellis Horwood, Chichester, pp 75–93

    Google Scholar 

  • Grindle M, Dolderson GH (1986) Effects of a modifier gene on the phenotype of a dicarboximide-resistant mutant of Neurospora crassa. Trans Br Mycol Soc 87:457–460

    Article  CAS  Google Scholar 

  • Grindle M, Faretra F (1993) Genetic aspects of fungicide resistance. In: Lyr H, Polter C (eds) Modern fungicides and antifungal compounds. Proceedings of the 10th international symposium, Reinhardsbrunn, Germany, May 1992. Ulmer, Stuttgart, Germany, pp 33–43

    Google Scholar 

  • Guerineau M, Slonimski PP, Avner PR (1974) Yeast episome: oligomycin resistance associated with a small covalently closed non-mitochondrial circular DNA. Biochem Biophys Res Commun 61:462–469

    Article  CAS  PubMed  Google Scholar 

  • Hawkins NJ, Cools HJ, Sierotzki H, Shaw MW, Knogge W, Kelly SL, Kelly DE, Fraaije BA (2014) Paralog re-emergence: a novel, historically contingent mechanism in the evolution of antimicrobial resistance. Mol Biol Evol 31:1793–1802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heaney SP, Hall AA, Davies SA, Olaya G (2000). Resistance to fungicides in the QoI-STAR cross-resistance group: current perspectives. In: Proceedings of the British crop protection conference: pests and diseases, 13–16 November 2002, vol 2. BCPC, Farnham, Surrey, UK, pp 755–762

    Google Scholar 

  • Hermann D, Gisi U (2012) Fungicide resistance in oomycetes with special reference to Phytophthora infestans and phenylamides. In: Thind TS (ed) Fungicide resistance in crop protection: risk and management. CAB International, Wallingford, pp 133–140

    Chapter  Google Scholar 

  • Hermisson J, Pennings PS (2005) Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics 169:2335–2352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hilber UW, Hilber-Bodmer M (1998) Genetic basis and monitoring of resistance of Botryotinia fuckeliana to anilinopyrimidines. Plant Dis 82:496–500

    Article  CAS  Google Scholar 

  • Hobbelen PH, Paveley ND, van den Bosch F (2014) The emergence of resistance to fungicides. PLoS One 9, e91910

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hollomon DW (1981) Genetic control of ethirimol resistance in a natural population of Erysiphe graminis f.sp. hordei. Phytopathology 71:536–540

    Article  CAS  Google Scholar 

  • Hollomon DW, Butters J, Clark J (1984) Genetic control of triadimenol resistance in barley powdery mildew. In: Proceedings of the British crop protection conference: pests and diseases, 19–22 November 1984, vol 2. BCPC, Croydon, UK, pp 477–482

    Google Scholar 

  • Hollomon DW, Butters JA, Kendall SJ (1997) Mechanism of resistance to fungicides. In: Sjut V (ed) Molecular mechanisms of resistance to agrochemicals, vol 13, Chemistry of plant protection. Springer, Heidelberg, pp 1–20

    Chapter  Google Scholar 

  • Ishii H (2010) QoI fungicide resistance: current status and the problems associated with DNA-based monitoring. In: Gisi U, Chet I, Gullino ML (eds) Recent developments in management of plant diseases, plant pathology in the 21st century, vol 1. Springer, Dordrecht, pp 37–45

    Chapter  Google Scholar 

  • Ishii H (2012a) Resistance to QoI and SDHI fungicides in Japan. In: Thind TS (ed) Fungicide resistance in crop protection: risk and management. CAB International, Wallingford, pp 237–250

    Google Scholar 

  • Ishii H (2012b) Resistance in Venturia nashicola to benzimidazoles and sterol demethylation inhibitors. In: Thind TS (ed) Fungicide resistance in crop protection: risk and management. CAB International, Wallingford, pp 21–31

    Chapter  Google Scholar 

  • Ishii H, Yano K, Date H, Furuta A, Sagehashi Y, Yamaguchi T, Sugiyama T, Nishimura K, Hasama W (2007) Molecular characterization and diagnosis of QoI resistance in cucumber and eggplant fungal pathogens. Phytopathology 97:1458–1466

    Article  CAS  PubMed  Google Scholar 

  • Ishii H, Fountaine J, Chung WH, Kansako M, Nishimura K, Takahashi K, Oshima M (2009) Characterization of QoI resistant field isolates of Botrytis cinerea from citrus and strawberry. Pest Manag Sci 65:916–922

    Article  CAS  PubMed  Google Scholar 

  • Kalamarakis AE, de Waard MA, Ziogas BN, Georgopoulos SG (1991) Resistance to fenarimol in Nectria haematococca var. cucurbitae. Pestic Biochem Physiol 40:212–220

    Article  CAS  Google Scholar 

  • Kappas A, Georgopoulos SG (1970) Genetic analysis of dodine resistance in Nectria haematococca (Syn. Hypomyces solani). Genetics 66:617–622

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karaoglanidis GS, Markoglou AN, Bardas GA, Doukas EG, Konstantinou S, Kalampokis JF (2011) Sensitivity of Penicillium expansum field isolates to tebuconazole, iprodione, fludioxonil and cyprodinil and characterization of fitness parameters and patulin production. Int J Food Microbiol 145:195–204

    Article  CAS  PubMed  Google Scholar 

  • Katan T, Shabi E (1982) Characterization of a dicarboximide-fungicide-resistant laboratory isolate of Monilinia laxa. Phytoparasitica 10:241–245

    Article  CAS  Google Scholar 

  • Kim YS, Dixon EW, Vincelli P, Farman ML (2003) Field resistance to strobilurin (QoI) fungicides in Pyricularia grisea caused by mutations in the mitochondrial cytochrome b gene. Phytopathology 93:891–900

    Article  CAS  PubMed  Google Scholar 

  • Knapova G, Schlenzig A, Gisi U (2002) Crosses between isolates of Phytophthora infestans from potato and tomato and characterization of F1 and F2 progeny for phenotypic and molecular markers. Plant Pathol 51:698–709

    Article  Google Scholar 

  • Kretschmer M (2012) Emergence of multi-drug resistance in fungal pathogens: a potential threat to fungicide performance in agriculture. In: Thind TS (ed) Fungicide resistance in crop protection: risk and management. CAB International, Wallingford, pp 251–267

    Chapter  Google Scholar 

  • Kretschmer M, Leroch M, Mosbach A, Walker AS, Fillinger S, Mernke D, Schoonbeek HJ, Pradier JM, Leroux P, De Waard MA, Hahn M (2009) Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathog 5, e1000696

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lalève A, Fillinger S, Walker AS (2014a) Fitness measurement reveals contrasting costs in homologous recombinant mutants of Botrytis cinerea resistant to succinate dehydrogenase inhibitors. Fungal Genet Biol 67:24–36

    Article  PubMed  CAS  Google Scholar 

  • Lalève A, Gamet S, Walker AS, Debieu D, Toquin V, Fillinger S (2014b) Site-directed mutagenesis of the P225, N230 and H272 residues of succinate dehydrogenase subunit B from Botrytis cinerea highlights different roles in enzyme activity and inhibitor binding. Environ Microbiol 16:2253–2266

    Article  PubMed  CAS  Google Scholar 

  • Lasseron-De Falandre A, Daboussi MJ, Leroux P (1991) Inheritance of resistance to fenpropimorph and terbinafine, two sterol biosynthesis inhibitors, in Nectria haematococca. Phytopathology 81:1432–1438

    Article  CAS  Google Scholar 

  • Leroux P, Fritz R, Debieu D, Albertini C, Lanen C, Bach J, Gredt M, Chapeland F (2002) Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Manag Sci 58:876–888

    Article  CAS  PubMed  Google Scholar 

  • Lesemann SS, Schimpke S, Dunemann F, Deising HB (2006) Mitochondrial heteroplasmy for the cytochrome b gene controls the level of strobilurin resistance in the apple powdery mildew fungus Podosphaera leucotricha (Ell. & Ev.) E.S. Salmon. J Plant Dis Prot 113:259–266

    CAS  Google Scholar 

  • Liu Y, Liu Z, Hamada MS, Yin YN, Ma ZH (2014) Characterization of laboratory pyrimethanil-resistant mutants of Aspergillus flavus from groundnut in China. Crop Prot 60:5–8

    Article  CAS  Google Scholar 

  • Ma Z, Michailides TJ (2005) Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protect 24:853–863

    Article  CAS  Google Scholar 

  • Malandrakis AA, Markoglou AN, Nikou DC, Vontas JG, Ziogas BN (2006) Biological and molecular characterization of laboratory mutants of Cercospora beticola resistant to Qo inhibitors. Eur J Plant Pathol 116:155–166

    Article  Google Scholar 

  • Markoglou AN, Ziogas BN (1999) Genetic control of resistance to fenpropimorph in Ustilago maydis. Plant Pathol 48:521–530

    Article  CAS  Google Scholar 

  • Markoglou AN, Ziogas BN (2000) Genetic control of resistance to tridemorph in Ustilago maydis. Phytoparasitica 28:349–360

    Article  CAS  Google Scholar 

  • Markoglou AN, Ziogas BN (2001) Genetic control of resistance to the piperidine fungicide fenpropidin in Ustilago maydis. J Phytopathol 149:551–559

    Article  CAS  Google Scholar 

  • Markoglou AN, Malandrakis AA, Vitoratos AG, Ziogas BN (2006) Characterization of laboratory mutants of Botrytis cinerea resistant to QoI fungicides. Eur J Plant Pathol 115:149–162

    Article  CAS  Google Scholar 

  • Markoglou AN, Doukas EG, Ziogas BN (2008a) Phenylpyrrole-resistance and aflatoxin production in Aspergillus parasiticus Speare. Int J Food Microbiol 127:268–275

    Article  CAS  PubMed  Google Scholar 

  • Markoglou AN, Vattis K, Dimitriadis K, Doukas EG, Ziogas BN (2008b) Effect of phenylpyrrole resistance mutations on mycotoxin production by Aspergillus carbonarius and Penicillium expansum. In: Abstracts of the 9th international congress of plant pathology. ICPP, Torino, Italy, pp 24–29 August 2008. J Plant Pathol 90:S2.322

    Google Scholar 

  • Markoglou AN, Vitoratos AG, Doukas EG, Ziogas BN (2009) Phytopathogenic and mycotoxigenic characterization of laboratory mutant strains of Fusarium verticillioides resistant to demethylation inhibiting fungicides. In: Proceedings of the DPG-BCPC 3rd international symposium-plant protection and plant health in Europe, Berlin, Germany, 14–16 May 2009

    Google Scholar 

  • Meyer RW, Parmeter JR (1968) Changes in chemical tolerance associated with heterokaryosis in Thanatephorus cucumeris. Phytopathology 58:472–475

    Google Scholar 

  • Miguez M, Reeve C, Wood PM, Hollomon DW (2004) Alternative oxidase reduces the sensitivity of Mycosphaerella graminicola to QoI fungicides. Pest Manag Sci 60:3–7

    Article  CAS  PubMed  Google Scholar 

  • Milgroom MG, Levln SA, Fry WE (1989) Population genetics theory and fungicide resistance. In: Leonard KJ, Fry WE (eds) Plant disease epidemiology: genetics, resistance, and management. McGraw-Hill Publishing Company, New York, pp 340–367

    Google Scholar 

  • Molnar A, Hornok L, Pesti M (1985) The high level of benomyl tolerance in Fusarium oxysporum is determined by the synergistic interaction of two genes. Exp Mycol 9:326–333

    Article  CAS  Google Scholar 

  • Nakazawa Y, Yamada M (1997) Chemical control of grey mould in Japan. A history of combating resistance. Agrochem Japan 71:2–6

    CAS  Google Scholar 

  • Ochiai N, Fujimura M, Motoyama T, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I (2001) Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa. Pest Manag Sci 57:437–442

    Article  CAS  PubMed  Google Scholar 

  • Ogden JE, Grindle M (1983) Changes in genetic constitution and sterol composition during growth of nystatin-resistant heterokaryons of Neurospora crassa. Genet Res 42:91–103

    Article  CAS  Google Scholar 

  • Orth AB, Sfarra A, Pell EJ, Tien M (1994) Characterization and genetic analysis of laboratory mutants of Ustilago maydis resistant to dicarboximide and aromatic hydrocarbon fungicides. Phytopathology 84:1210–1214

    Article  CAS  Google Scholar 

  • Oshima M, Fujimura M, Banno S, Hashimoto C, Motoyama T, Ichiishi A, Yamaguchi I (2002) A point mutation in the two-component histidine kinase BcOS-1 gene confers dicarboximide resistance in field isolates of Botrytis cinerea. Phytopathology 92:75–80

    Article  CAS  PubMed  Google Scholar 

  • Otto SP, Gerstein AC (2008) The evolution of haploidy and diploidy. Curr Biol 18:R1121–4

    Article  CAS  PubMed  Google Scholar 

  • Pang Z, Shao J, Chen L, Lu X, Hu J, Qin Z, Liu X (2013) Resistance to the novel fungicide pyrimorph in Phytophthora capsici: risk assessment and detection of point mutations in CesA3 that confer resistance. PLoS One 8, e56513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peever TL, Milgroom MG (1992) Inheritance of triadimenol resistance in Pyrenophora teres. Phytopathology 82:821–828

    Article  CAS  Google Scholar 

  • Pollastro S, Faretra F, Santomauro A, Miazzi M, Natale P (1996) Studies on pleiotropic effects of mating type, benzimidazole-resistance and dicarboximide-resistance genes in near-isogenic strains of Botryotinia fuckeliana (Botrytis cinerea). Phytopathol Medit 35:48–57

    Google Scholar 

  • Qiu J, Xu J, Yu J, Bi C, Chen C, Zhou M (2011) Localisation of the benzimidazole fungicide binding site of Gibberella zeae β2-tubulin studied by site-directed mutagenesis. Pest Manag Sci 67:191–198

    Article  CAS  PubMed  Google Scholar 

  • Robinson HL, Riduct CJ, Sierotzki H, Gisi U, Brown JKM (2002) Isogamous, hermaphroditic inheritance of mitochondrion-encoded resistance to Qo inhibitor fungicides in Blumeria graminis f.sp. tritici. Fungal Genet Biol 36:98–106

    Article  CAS  PubMed  Google Scholar 

  • Rumbou A, Gessler C (2006) Particular structure of Plasmopara viticola populations evolved under Greek island conditions. Phytopathology 96:501–509

    Article  PubMed  Google Scholar 

  • Santomauro A, Pollastro S, De Guido MA, De Miccolis Angelini RM, Natale P, Faretra F (2000) A long-term trial on the effectiveness of new fungicides against grey mould on grapevine and on their influence on the pathogen’s population. In: Abstract Book of the XII international botrytis symposium. Reims, France, p P75

    Google Scholar 

  • Shattock RC (1988) Studies on the inheritance of resistance to metalaxyl in Phytophthora infestans. Plant Pathol 37:4–11

    Article  CAS  Google Scholar 

  • Sierotzki H, Scalliet G (2013) A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology 103:880–887

    Article  CAS  PubMed  Google Scholar 

  • Sierotzki H, Frey R, Wullschleger J, Palermo S, Karlin S, Godwin J, Gisi U (2007) Cytochrome b gene sequence and structure of Pyrenophora teres and P. tritici-repentis and implications for QoI resistance. Pest Manag Sci 63:225–33

    Article  CAS  PubMed  Google Scholar 

  • Skinner W, Bailey A, Renwick A, Keon J, Gurr S, Hargreaves J (1998) A single amino-acid substitution in the iron-sulphur protein subunit of succinate dehydrogenase determines resistance to carboxin in Mycosphaerella graminicola. Curr Genet 34:393–398

    Article  CAS  PubMed  Google Scholar 

  • Skylakakis G (1987) Changes in the composition of pathogen populations caused by resistance to fungicides. In: Wolfe MS, Caten CE (eds) Populations of plant pathogens: their dynamics and genetics. Blackwell, Oxford, pp 227–237

    Google Scholar 

  • Steffens JJ, Pell EJ, Tien M (1996) Mechanisms of fungicide resistance in phytopathogenic fungi. Curr Opin Biotechnol 7:348–355

    Article  CAS  PubMed  Google Scholar 

  • Steinfeld U, Sierotzki H, Parisi S, Gisi U (2002) Comparison of resistance mechanisms to strobilurin fungicides in Venturia inaequalis. In: Lyr H, Russell PE, Dehne HW, Gisi U, Kuck KH (eds) Modern fungicides and antifungal compounds III. Proceedings of the 13th international reinhardsbrunn symposium, Reinhardsbrunn, Germany, May 2001. AgroConcept GmbH, Bonn, Germany, pp 167–176

    Google Scholar 

  • Summers RW, Heaney SP, Grindle M (1984) Studies of a dicarboximide resistant heterokaryon of Botrytis cinerea. In: Proceedings, Brighton crop protection conference, Brighton, UK, pp 453–458

    Google Scholar 

  • Taga M, Nakagawa H, Tsuda M, Ueyama A (1979) Identification of three different loci controlling kasugamycin resistance in Pyricularia oryzae. Phytopathology 69:463–466

    Article  CAS  Google Scholar 

  • Torriani SFF, Brunner PC, McDonald BA, Sierotzki H (2009) QoI resistance emerged independently at least 4 times in European populations of Mycosphaerella graminicola. Pest Manag Sci 65:155–162

    Article  CAS  PubMed  Google Scholar 

  • van Tuyl JM (1977) Genetic aspects of resistance to imazalil in Aspergillus nidulans. Neth J Plant Path 83:169–176

    Article  Google Scholar 

  • Veloukas T, Kalogeropoulou P, Markoglou AN, Karaoglanidis GS (2014) Fitness and competitive ability of Botrytis cinerea field isolates with dual resistance to SDHI and QoI fungicides, associated with several sdhB and the cytb G143A mutations. Phytopathology 104:347–356

    Article  CAS  PubMed  Google Scholar 

  • Wolfe MS (1982) Dynamics of the pathogen population in relation to fungicide resistance. In: Dekker J, Georgopoulos SG (eds) Fungicide resistance in crop protection. Centre for Agricultural Publishing and Documentation, Wageningen, pp 139–148

    Google Scholar 

  • Yarden O, Katan T (1993) Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea. Phytopathology 83:1478–1483

    Article  CAS  Google Scholar 

  • Yoshimi A, Imanshi J, Gafur A, Tanaka C, Tsuda M (2003) Characterisation and genetic analysis of laboratory mutants of Cochliobolus heterostrophus resistant to dicarboximide and phenylpyrrole fungicides. J Gen Plant Pathol 69:101–108

    CAS  Google Scholar 

  • Young DH, Spiewak SL, Slawecki RA (2001) Laboratory studies to assess the risk of development of resistance to zoxamide. Pest Manag Sci 57:1081–1087

    Article  CAS  PubMed  Google Scholar 

  • Young DH, Kemmitt GM, Owen J (2005) A comparative study of XR-539 and other oomycete fungicides: similarity to dimethomorph and amino acid amides in its mechanism of action. In: Dehne HW, Gisi U, Kuck KH, Russell PE, Lyr H (eds) Modern fungicides and antifungal compounds IV. BCPC, Alton, pp 145–52

    Google Scholar 

  • Zhang Y, Lamm R, Pillonel C, Lam S, Xu JR (2002) Osmoregulation and fungicide resistance: the Neurospora crassa os-2 gene encodes a HOG1 mitogen-activated protein kinase homologue. Appl Environ Microbiol 68:532–538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang YJ, Yu JJ, Zhang YN, Zhang X, Cheng CJ, Wang JX, Hollomon DW, Fan PS, Zhou MG (2009) Effect of carbendazim resistance on trichothecene production and aggressiveness of Fusarium graminearum. Mol Plant Microbe Interact 22:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Zheng D, Olaya G, Köller W (2000) Characterization of laboratory mutants of Venturia inaequalis resistant to the strobilurin-related fungicide kresoxim-methyl. Curr Genet 38:148–155

    Article  CAS  PubMed  Google Scholar 

  • Zhu SS, Liu XL, Wang Y, Wu XH, Liu PF, Li JQ, Yuan SK, Si NG (2007) Resistance of Pseudoperonospora cubensis to flumorph on cucumber in plastic houses. Plant Pathol 56:967–975

    Article  CAS  Google Scholar 

  • Ziogas BN, Markoglou AN, Tzima A (2002) A non-Mendelian inheritance of resistance to strobilurin fungicides in Ustilago maydis. Pest Manag Sci 58:908–916

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Pollastro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

De Miccolis Angelini, R.M., Pollastro, S., Faretra, F. (2015). Genetics of Fungicide Resistance. In: Ishii, H., Hollomon, D. (eds) Fungicide Resistance in Plant Pathogens. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55642-8_2

Download citation

Publish with us

Policies and ethics