Skip to main content
Log in

Laser Thermometry of Solids: State of the Art and Problems

  • Published:
Measurement Techniques Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Novel active techniques are surveyed for measuring the temperatures of solids. They are based on using an optical beam, usually from a laser. Laser thermometry methods are compared with contact and radiation ones. Problems are discussed in relation to the general use of the new methods in engineering monitoring. The main problem is the lack of metrological support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Peyton et al., Proc. SPIE, 1393, 295 (1990).

    Google Scholar 

  2. I. P. Herman, IEEE J. Select. Topics Quant. Electron., 1, No. 4, 1047 (1995).

    Google Scholar 

  3. A. N. Magunov and O. V. Lukin, Mikroélektron., 25, No. 2, 97 (1996).

    Google Scholar 

  4. A. N. Magunov, Prib. Tekh. Éksper., No. 3, 6 (1998).

    Google Scholar 

  5. Yu. L. Rainova and A. V. Barkhotkin, Izv. Vyssh. Ucheb. Zaveden., Élektron., No. 4, 59 (1999).

    Google Scholar 

  6. A. N. Magunov, Prib. Tekh. Éksper., No. 2, 3 (2000).

    Google Scholar 

  7. P. Kolodner and J. A. Tyson, Appl. Phys. Lett., 40, No. 9, 782 (1982).

    Google Scholar 

  8. P. Kolodner and J. A. Tyson, Appl. Phys. Lett., 42, No. 1, 117 (1983).

    Google Scholar 

  9. C. Herzum et al., Microelectronic J., 29, No. 4-5, 163 (1998).

    Google Scholar 

  10. H. Brugger and P. W. Epperlein, Appl. Phys. Lett., 56, 1049 (1990).

    Google Scholar 

  11. T. Yamaguchi et al., Furukawa Rev., No. 18, 73 (1999).

  12. M. Wautelet, J. Appl. Phys., 65, No. 10, 4033 (1989).

    Google Scholar 

  13. E. A. Morozova, G. A. Shafeev, and M. Wautelet, Meas. Sci. Technol., 3, No. 3, 302 (1992).

    Google Scholar 

  14. K. Murakami, K. Takita, and K. Masuda, Jap. J. Appl. Phys., 20, No. 12, L867 (1981).

    Google Scholar 

  15. R. A. Bond, S. Dzioba, and H. M. Naguib, J. Vac. Sci. Technol., 18, No. 2, 335 (1981).

    Google Scholar 

  16. V. I. Kubrin et al., Elektron. Promysh., No. 2, 50 (1987).

    Google Scholar 

  17. E. A. Tikhonova, A. Yu. Tyanginskii, and E. P. Sharonova, Elektron. Tekh., Mikroélektron., No. 3, 84 (1987).

    Google Scholar 

  18. V. M. Donnelly, D. E. Ibbotson, and C.-P. Chang, Vac. Sci. Technol. A., 10, No. 4, Pt. 1, 1060 (1992).

    Google Scholar 

  19. R. Kurosaki et al., Proc. SPIE, 2635, 224 (1995).

    Google Scholar 

  20. A. N. Magunov and E. V. Mudrov, Teplofiz. Vysok. Temper., 30, No. 2, 372 (1992).

    Google Scholar 

  21. O. V. Lukin and A. N. Magunov, Opt. Spektroskop., 74, No. 3, 630 (1993).

    Google Scholar 

  22. O. V. Lukin and A. N. Magunov, Mikroélektron., 24, No. 2, 119 (1995).

    Google Scholar 

  23. A. N. Magunov and A. Yu. Gasilov, Mikroélektron., 26, No. 4, 336 (1997).

    Google Scholar 

  24. T. R. Hayes et al., Appl. Phys. Lett., 57, No. 26, 2817 (1990).

    Google Scholar 

  25. C. C. Cheng et al., J. Vac. Sci. Technol. A, 13, No. 4, 1970 (1995).

    Google Scholar 

  26. M. C. M. Van de Sanden et al., ESCAMPIG 94, Vol. 18E, ECA, Noordwijkerhout, Netherlands (1994), p. 396.

    Google Scholar 

  27. C. Foissac et al., Plasma Sources Sci. Technol., 8, No. 4, 603 (1999).

    Google Scholar 

  28. A. N. Magunov, Proc. XVI IMEKO World Congr. Sept. 25-28, 2000, Vol. 6, Vienna, Austria (2000), p. 371.

    Google Scholar 

  29. A. N. Magunov, ibid., p. 381.

  30. O. V. Lukin and A. N. Magunov, Mikroélektron., 27, No. 6, 440 (1998).

    Google Scholar 

  31. A. N. Magunov, Prib. Tekh. Éksper., No. 5, 131 (1995).

    Google Scholar 

  32. A. N. Magunov, Prib. Tekh. Éksper., No. 4, 160 (2000).

    Google Scholar 

  33. A. N. Magunov, Prib. Tekh. Éksper., No. 5, 133 (2000).

    Google Scholar 

  34. J. W. A. M. Gielen, Plasma Beam Deposition of Amorphous Hydrogenated Carbon: PhD Thesis, Eindhoven Univ. of Technology (1996), p. 30, 102.

  35. A. Yu. Luk'yanov et al., Pis'ma v Zh. Tekh. Fiz., 19, No. 1, 7 (1993).

    Google Scholar 

  36. B. E. Weir et al., Appl. Phys. Lett., 59, No. 2, 204 (1991).

    Google Scholar 

  37. J. C. Sturm, P. V. Schwartz, and P. M. Garone, Appl. Phys. Lett., 56, No. 10, 961 (1990).

    Google Scholar 

  38. J. C. Sturm, P. M. Garone, and P. V. Schwartz, J. Appl. Phys., 69, No. 1, 542 (1991).

    Google Scholar 

  39. G. Asbury and P. Bunton, Rev. Sci. Instrum., 69, No. 2, Pt. 1, 603 (1998).

    Google Scholar 

  40. T. P. Pearsall et al., Rev. Sci. Instrum., 66, No. 10, 4977 (1995).

    Google Scholar 

  41. Z. Wang et al., J. Vac. Sci. Technol. B., 15, No. 1, 116 (1997).

    Google Scholar 

  42. S. R. Johnson et al., J. Vac. Sci. Technol. B., 11, No. 3, 1007 (1993).

    Google Scholar 

  43. S. R. Johnson et al., J. Crystal Growth, 201/202, 40 (1999).

    Google Scholar 

  44. B. V. Shanabrook et al., J. Vac. Sci. Technol. B., 11, No. 3, 994 (1993).

    Google Scholar 

  45. D. S. Katzer and B. V. Shanabrook, ibid., 1003.

    Google Scholar 

  46. H. Shen, Proc. SPIE, 1286, 125 (1990).

    Google Scholar 

  47. P. M. Thibado, G. J. Salamo, and Y. Baharav, J. Vac. Sci. Technol. B., 17, No. 1, 253 (1999).

    Google Scholar 

  48. J. A. Roth et al., J. Crystal Growth, 201/202, 31 (1999).

    Google Scholar 

  49. Y. Li et al., J. Crystal Growth, 175/176, 250 (1997).

    Google Scholar 

  50. S. R. Johnson and T. Tiedje, ibid., 273.

    Google Scholar 

  51. D. Guidotti, J. Vac. Sci. Technol. B., 16, No. 2, 609 (1998).

    Google Scholar 

  52. G. L. Olson and J. A. Roth, Materials Sci. Reports, 3, No. 1, 1 (1988).

    Google Scholar 

  53. X. Xu, C. P. Grigoropoulos, and R. E. Russo, J. Heat Transfer, 117, No. 1, 17 (1995).

    Google Scholar 

  54. P. J. Timans, R. A. McMahon, and H. Ahmed, Appl. Phys. Lett., 53, No. 19, 1844 (1988).

    Google Scholar 

  55. P. J. Timans, R. A. McMahon, and H. Ahmed, J. Appl. Phys., 66, No. 6, 2285 (1989).

    Google Scholar 

  56. J. M. C. England et al., J. Appl. Phys., 70, No. 1, 389 (1991).

    Google Scholar 

  57. L. A. Lompre et al., Appl. Phys. Lett., 43, No. 2, 168 (1983).

    Google Scholar 

  58. H. Kempkens et al., J. Appl. Phys., 67, No. 8, 3618 (1990).

    Google Scholar 

  59. K. A. Conrad et al., J. Vac. Sci. Technol. B., 11, No. 6, 2096 (1993).

    Google Scholar 

  60. R. K. Sampson et al., J. Electrochem. Soc., 141, No. 3, 737 (1994).

    Google Scholar 

  61. G. E. Jellison Jr. and D. H. Lowndes, Appl. Phys. Lett., 47, No. 7, 718 (1985).

    Google Scholar 

  62. G. M. W. Kroesen, G. S. Oehrlein, and T. D. Bestwick, J. Appl. Phys., 69, No. 5, 3390 (1991).

    Google Scholar 

  63. A. S. Mardezhov, S. I. Chikichev, and V. S. Shvets, Ellipsometry: Theory, Methods, and Applications, K. K. Svitashev and A. S. Mardezhov (eds.) [in Russian], Nauka, Novosibirsk (1991), p. 127.

    Google Scholar 

  64. O. P. Pchelyakov, Usp. Fiz. Nauk., 170, No. 9, 993 (2000).

    Google Scholar 

  65. D. Kirillov and J. L. Merz, Laser Diagnostics and Photochemical Processing for Semiconductor Devices, R. M. Osgood, S. R. J. Brueck, and H. R. Schlossberg (eds.), North-Holland, Amsterdam (1983), p. 92.

    Google Scholar 

  66. S. D. Rassat and E. J. Davis, Appl. Spectrosc., 48, No. 12, 1498 (1994).

    Google Scholar 

  67. G. D. Pazionis, H. Tang, and I. P. Herman, IEEE J. Quant. Electron., 25, 976 (1989).

    Google Scholar 

  68. M. Yamada et al., J. Appl. Phys., 59, No. 4, 1350 (1986).

    Google Scholar 

  69. H. W. Lo and A. Compaan, Phys. Rev. Lett., 44, No. 24, 1604 (1980).

    Google Scholar 

  70. B. J. Kip and R. J. Meier, Appl. Spectrosc., 44, No. 4, 707 (1990).

    Google Scholar 

  71. I. Yu. Pavlovskii and A. N. Obraztsov, Prib. Tekh. Éksper., No. 2, 144 (1998).

    Google Scholar 

  72. N. Rosman et al., J. Appl. Phys., 78, No. 1, 519 (1995).

    Google Scholar 

  73. D. Drews et al., J. Appl. Phys., 78, No. 6, 4060 (1995).

    Google Scholar 

  74. D. Kirillov and J. L. Merz, J. Appl. Phys., 54, No. 7, 4104 (1983).

    Google Scholar 

  75. D. J. As and L. Palmetshofer, J. Appl. Phys., 62, No. 2, 369 (1987).

    Google Scholar 

  76. I. Pelant et al., J. Appl. Phys., 73, No. 7, 3477 (1993).

    Google Scholar 

  77. I.-Y. S. Lee et al., J. Appl. Phys., 72, 2440 (1992).

    Google Scholar 

  78. P. Kolodner, A. Katzir, and N. Hartsough, Appl. Phys. Lett., 42, No. 8, 749 (1983).

    Google Scholar 

  79. J. E. Daugherty and D. V. Graves, J. Vac. Sci. Technol. A, 11, 1126 (1993).

    Google Scholar 

  80. G. Swinkels and G. Kroesen, Proc. 14th Symp. on Plasma Chemistry, Vol. 2, Prague (1999), p. 519.

    Google Scholar 

  81. C. J. Sandroff et al., Appl. Phys. Lett., 59, No. 10, 1215 (1991).

    Google Scholar 

  82. Y. Takahira and H. Okamoto, J. Crystal Growth, 175/176, 267 (1997).

    Google Scholar 

  83. D. E. Hare, J. Franken, and D. D. Dlott, J. Appl. Phys., 77, No. 11, 5950 (1995).

    Google Scholar 

  84. J. M. Hicks et al., Proc. SPIE, 1208, 127 (1990).

    Google Scholar 

  85. B. W. Peuse, A. Rosekrans, and K. Snow, Proc. SPIE, 1804, 45 (1993).

    Google Scholar 

  86. B. W. Peuse and A. Rosekrans, Proc. SPIE, 2091, 301 (1994).

    Google Scholar 

  87. A. Durandet et al., J. Appl. Phys., 67, No. 8, 3862 (1990).

    Google Scholar 

  88. O. Joubert et al., J. Appl. Phys., 70, No. 2, 977 (1991).

    Google Scholar 

  89. G. E. Jellison Jr. and F. A. Modine, J. Appl. Phys., 76, No. 6, 3758 (1994).

    Google Scholar 

  90. A. N. Magunov, Opt. Spektroskop., 73, No. 2, 352 (1992).

    Google Scholar 

  91. J. A. McCaulley et al., Phys. Rev. B, 49, No. 11, 7408 (1994).

    Google Scholar 

  92. J. Matsuoka et al., J. Non-Crystal. Sol., 135, 86 (1991).

    Google Scholar 

  93. S. De Nicola et al., Opt. Commun., 159, 203 (1999).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magunov, A.N. Laser Thermometry of Solids: State of the Art and Problems. Measurement Techniques 45, 173–181 (2002). https://doi.org/10.1023/A:1015595806622

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015595806622

Keywords

Navigation