Skip to main content
Log in

Monitoring of the Metal Surface Temperature during Laser Processing

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The principles of monitoring the laser processing of metals are considered; the design and the main parameters of the spectrophotometer designed on the base of an optical-fiber AvaSpec 2048 spectrometer with the spectral range 380–1050 nm are presented. The technique of its calibration is discussed and the obtained spectral sensitivity is reported. The measured spectra of optical and near IR radiation that forms in the contact region of CO2 laser radiation (wavelength 10.2 μm, power 1 kW) with the steel surface are presented. The problems of selecting the spectral portion in which the uncertainty of measuring temperature during contactless technological monitoring of high-temperature laser processes using thermographic devices will be minimal are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. J. Dowden, The Theory of Laser Materials Processing (Springer Series in Materials Sciences, 2009), Vol. 119.

    Book  Google Scholar 

  2. C. Meier, R. Penny, Y. Zoua, J. Gibbs, et al., “Thermophysical phenomena in metal additive manufacturing by selective laser melting: fundamentals, modeling, simulation and experimentation,” Ann. Rev. Heat Trans. (2018). https://doi.org/10.1615/AnnualRevHeattransfer.2018019042

    Article  Google Scholar 

  3. H. Helvajian, “Laser material processing in the micro and nanometer domains: past, present and possibly the future,” J. Laser Micro/Nanoengineering 4 (1), 1–6 (2009).

    Article  CAS  Google Scholar 

  4. M. Zain-ul-abdein, D. Nelias, J. Jullien, and D. Deloison, “”Prediction of laser beam welding-induced distortions and residual stresses by numerical simulation for aeronautic application,” J. Mater. Proc. Technol. 209, 2907–2917 (2009).

    Article  CAS  Google Scholar 

  5. S. Ostuni, P. Leo, G. Gasalino, “FEM simulation of dissimilar aluminum titanium fiber laser welding using 2D and 3D Gaussian heat sources,” Metals 7 (8), 307 (2017).

    Article  Google Scholar 

  6. X. He and T. Debroy, “Probing temperature during laser spot welding from vapor composition and modeling,” J. Appl. Phys. 94 (10), 6949–6958 (2003).

    Article  CAS  Google Scholar 

  7. A. N. Cherpanov and V. P. Shapeev, “Modeling of laser welding of flat parts using modifying nanopowders,” Termophys. Aeromech. 20 (2), 237–250 (2013).

    Article  Google Scholar 

  8. V. I. Bogdanovich, M. G. Giorbelidzhe, A. V. Sotov, et al., “Mathematical modeling of powder melting processes in the selective laser melting technology,” Izv. Samara Nauchn. Tsentr RAS 19 (4), 105–114 (2017).

    Google Scholar 

  9. L. S. Petrova, “Mathematical modeling of processes of heating of piece-homogeneous bodies with allowance for the heat flux relaxation,” Naukovedenie 9 (1), (2017). http://naukovedenie.ru/PDF/38TVN117.pdf.

  10. M. N. Libenson, E. B. Yakovlev, and G. D. Shandybina, Interaction of Laser Radiation with a Material (Power Optics). Part I: Absorption of Laser Radiation in a Material: Abstract of Lectures, Ed. by V. P. Veiko (SPbGU ITMO, St. Petersburg, 2008).

  11. M. N. Libenson, E. B. Yakovlev, and G. D. Shandybina, Interaction of Laser Radiation with a Material (Power Optics). Part II: Laser Heating and Fracture of Materials: Textbook, Ed. by V. P. Veiko (NIU ITMO, St. Petersburg, 2014).

    Google Scholar 

  12. T. Sibillano, A. Ancona, V. Berardi, and P. Lugara, “A real time spectroscopic sensor for monitoring laser welding processes,” Sensors 9 (5), 3376–3385 (2009).

    Article  CAS  Google Scholar 

  13. V. A. Firago, “Principles of contactless monitoring parameters of laser processing of structural materials,” in Proceedings of X International Scientific-Engineering Conference on Quantum Electronics (Minsk, 2015), pp. 202–205.

  14. I. Zhirnov, D. V. Kotoban, and A. V. Gusarov, “Evaporation-induced gas-phase flows at selective laser melting,” Appl. Phys. A 124 (2), 9 (2018).

    Article  Google Scholar 

  15. I. Zhirnov, C. Protasov, D. Kotoban, A. V. Gusarov, and T. Tarasova, “New approach of true temperature restoration in optical diagnostics using IR-camera,” J. Therm. Spray Technol. 26 (4), 648–660 (2017).

    Article  Google Scholar 

  16. D. Dagel, G. Grossetete, and O. Danny, Measurement of Laser Weld Temperature for 3D Model Input (Sandia National Laboratories, New Mexico, 2016).

    Book  Google Scholar 

  17. D. You, X. Gao, and S. Katayama, “Review of laser welding monitoring,” Sci. Technol. Weld. Join. 19 (3), 181–201 (2014).

    Article  Google Scholar 

  18. J. Stavridis, J. Papacharalampopoulos, and P. Stavropoulos, “Quality assessment in laser welding: a critical review,” Intern. J. Advanc. Manufact. Technol. 94 (5–8), 1825–1847 (2017).

    Article  Google Scholar 

  19. V. Firago, and W. Wojcik, “High-temperature three-colour thermal imager,” Przeglad Electrotechn. 91 (2), 208–214 (2015).

    Google Scholar 

  20. V. Firago, W. Wojcik, and I. Volkova, “The principles of reducing temperature measurement uncertainty of modern thermal imaging systems,” Przeglad Electrotechn. 92 (8), 117–120 (2016).

    Google Scholar 

  21. A. N. Magunov, Spectral Pyrometry (Fizmatlit, Moscow, 2012).

    Google Scholar 

  22. V. A. Firago, I. A. Sakovich, and A. N. Sobchuk, “Spectrophotometer for determination of the emission spectrum forming in the region of action of power laser radiation,” in Proceedings of XI International Scientific-Engineering Conference on Quantum Electronics (Minsk, 2017), pp. 177–179.

  23. V. A. Firago, A. G. Sen’kov, E. N. Savkova, and T. V. Golub, “Pyrometric monitoring of temperature of heated metals at mechanical-engineering enterprises,” Control. Diagnost., No. 5, 17–25 (2011).

  24. Emitting Properties of Solids, Ed. by A.E. Sheindlin (Energiya, Moscow, 1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Firago.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firago, V.A., Wojcik, W. & Dzhunisbekov, M.S. Monitoring of the Metal Surface Temperature during Laser Processing. Russ. Metall. 2019, 1224–1230 (2019). https://doi.org/10.1134/S0036029519110053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029519110053

Keywords:

Navigation