Skip to main content
Log in

Change of phytoplankton composition and biodiversity in Lake Sempach before and during restoration

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Lake Sempach, located in the central part of Switzerland, has a surface area of 14 km2, a maximum depth of 87 m and a water residence time of 15 years. Restoration measures to correct historic eutrophication, including artificial mixing and oxygenation of the hypolimnion, were implemented in 1984. By means of the combination of external and internal load reductions, total phosphorus concentrations decreased in the period 1984–2000 from 160 to 42 mg P m−3. Starting from 1997, hypolimnion oxygenation with pure oxygen was replaced by aeration with fine air bubbles. The reaction of the plankton has been investigated as part of a long-term monitoring program. Taxa numbers, evenness and biodiversity of phytoplankton increased significantly during the last 15 years, concomitant with a marked decline of phosphorus concentration in the lake. Seasonal development of phytoplankton seems to be strongly influenced by the artificial mixing during winter and spring and by changes of the trophic state. Dominance of nitrogen fixing cyanobacteria (Aphanizomenon sp.), causing a severe fish kill in 1984, has been correlated with lower N/P-ratio in the epilimnion. Buoyant algae such as Planktothrix rubescens (syn. Oscillatoria rubescens) increased in abundance due to enlargement of the trophogenic layer and extended mixing depth during winter. The interactions between zoo- and phytoplankton seemed to be depressed as a result of restoration measures. Zooplankton composition changed to more carnivorous and less herbivorous species. Oxygenation of the hypolimnion induced bioturbation of sediments, mainly by oligochaetae worms, and stimulated germination of spores and cysts and hatching of resting eggs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akeret, B., 1993. Zur Biologie von Chaoborus flavicans, Leptodora Kindtii und Bythotrephes longimanus unter dein Einfluss interner Restaurierungs-Massnahmen in drei Schweizer Seen. Diss. ETHZ Nr. 10137, Zürich.

  • Bachmann, H. & W. Hotz, 1922. Gutachten über die mutmasslichen Folgen der Absenkung des Sempachersees. Kant. Amt für Gewässerschutz, Luzern: 23 pp.

    Google Scholar 

  • Bartsch, A. F., 1980. The eutrophication story since Madison 1967 in: Restoration of Lakes and Inland waters, EPA 440/5-81-010, 10-16.

  • Benndorf, J., 1988. Objectives and unsolved problems in ecotechnology and biomanipulation: A. Preface. Limnologia 19: 5–8.

    Google Scholar 

  • Bloesch, J., P. Bossard, H. Bührer, H R Bürgi & R. Müller, 1995. Lake oligotrophication due to external phosphorus load reduction in Swiss Lakes. Proceedings 6th Internat. Conference on the Conservation and Managements of Lakes, 2, Kasumigaura.

  • Brynildson, O. M. & S. L. Serns, 1977. Effects of destratification and aeration of a lake on the distribution of planktonic crustacea, yellow perch and trout. Tech. Bull. 99, Wis. Dep. Nat. Resour.

  • Bürgi, H. R., 1983. Eine neue Netzgarnitur mit Kipp-Schliessmechanismus für quantitative Zooplanktonfänge in Seen. Schweiz. Z. Hydrol. 45: 505–507.

    Google Scholar 

  • Bürgi, H. R. & P. Stadelmann, 1991. Plankton succession in Lake Sempach, Lake Hallwil and Lake Baldegg before and during internal restoration measures. Verh. int. Ver. Limnol. 24: 931–936.

    Google Scholar 

  • Bürgi, H. R. & C. Jolidon, 1998. 10 Jahre Seesanierung Hallwilersee. Die Reaktion des Planktons. Wasser, Energie, Luft 90: 109–116.

    Google Scholar 

  • Bürgi, H. R., C. Heller, S. Gaebel, N. Mookerji & J. V. Ward, 1999. Strength of coupling between phyto-and zooplankton in Lake Lucerne (Switzerland) during phosphorus abatement subsequent to a weak eutrophication. J. Plankton Res. 21: 485–507.

    Google Scholar 

  • Bürgi, H. R. & P. Stadelmann, 2000. Change of phytoplankton diversity during long-term restoration of Lake Baldegg (Switzerland). Verh. int. Ver. Limnol. 27: 574–581.

    Google Scholar 

  • Deisinger, G., 1987. Langzeitentwicklung der Cyanophyceen in einigen Kärntner Seen vor und nach der Sanierung. Carinthia II, Klagenfurt 177/97: 101–129.

    Google Scholar 

  • Fast, A. W. & J. A. Amant, 1971. Nighttime artificial aeration of Puddingstone Reservoir, Los Angeles County, California. Calif. Fish. Game 57: 213.

    Google Scholar 

  • Florin, J. & H. Ambühl, 1978. Schlussbericht über die Interkantonale Limnologische Untersuchung desWalensees 1967–1976-Eidg. Aint für Umweltschutz, Bern.

  • Gaechter, R. & P. Stadelmann, 1993. Gewässerschutz und Seeforschung. In Ruoss, E. (ed.), Der Sempachersee. Mitt. Naturf. Ges. Luzern 33: 343–378.

  • Gaedke, U. & A. Schweizer, 1993. The first decade of oligotrophication in Lake Constance. Oecologia 93: 268–275.

    Google Scholar 

  • Gammeter, S., R. Forster & U. Zimmermann, 1997. Limnologische Untersuchung des Zürichsees 1972–1996. Ber. Wasserversorgung Zürich.

  • Gliwicz, Z. M., 1990. Daphnia growth at different concentrations of blue-green filaments. Arch. Hydrobiol. 120: 51–65.

    Google Scholar 

  • Goldschmidt, T., 1996. Darwin's Dreampond: Drama in Lake Victoria. MIT Press, Cambridge, Massachusetts: 274 pp.

    Google Scholar 

  • Govindjee, R. & B. Z. Braun, 1974. Light absorption, emission and photosynthesis. In Stewart, W. D. P. (ed.), Algal Physiology and Biochemistry. Botanical Monographs 10.

  • Heer, L., 1993. Geschichte der Fischerei. Mitt. Naturf. Ges. Luzern 33: 231–240.

    Google Scholar 

  • Heuscher, J., 1895. Der Sempachersee und seine Fischereiverhältnisse. Schweiz. Fischereizeitung 3: 163–213.

    Google Scholar 

  • Hutchinson, G. E., 1961. The paradox of the plankton. Am. Nat. 95: 137–146.

    Google Scholar 

  • Jaag, 0., 1972. Oscillatoria rubescens D.C. In Desikachary, T. V. (ed.), Taxonomy and Biology of Blue-green Algae. University of Madras, India: 296–299.

    Google Scholar 

  • Jaeger, D. & R. Koschel, 1995. Verfahren zur Sanierung und Restaurierung stehender Gewässer. Limnol. Aktuell 8, Gustav Fischer, Stuttgart: 330 pp.

    Google Scholar 

  • Jassby, A. D. & C. R. Goldman, 1974. A quantitative measure of succession rate and its application to the phytoplankton of lakes. Am. Nat. 108: 688–693.

    Google Scholar 

  • Kaufman, L., 1992. Catastrophic change in species-rich freshwater ecosystems: the lessons of Lake Victoria. Bioscience 42: 846–858.

    Google Scholar 

  • Krebs, C. J., 1993. Ecology: the Experimental Analysis of Distribution and Abundance. Harper Collins, New York: 801 pp.

    Google Scholar 

  • Lewis, W. M., 1978. Dynamics and succession of the phytoplankton in a tropical lake: Lake Lanao. Philippines. J. Ecol. 66: 849–880.

    Google Scholar 

  • Lorenzen, M. W. & R. Mitchell, 1975. An evaluation of artificial destratification for control of algal blooms. J. am.Wat.Wks. Ass. 67: 373.

    Google Scholar 

  • Mathis, B., 1999. Zufluss-Untersuchngen Sempachersee 1992/97. Amt für Umweltschutz, Luzern: 77 pp.

  • Mur, L. R. & R. O. Beijdorff, 1978. A model of the succession from green to blue-green algae based on light limitation. Verh. int. Ver. Limnol. 20: 2314–2321.

    Google Scholar 

  • Pavoni, M., 1963. Die Bedeutung des Nannoplanktons in Vergleich zum Netzplankton. Schweiz. Z. Hydrol. 25: 219–341.

    Google Scholar 

  • Ramberg, L., 1979. Relations between phytoplankton and light climate in two Swedish forest lakes. Int. Rev. ges. Hydrobiol. 64: 749–782.

    Google Scholar 

  • Reynolds, C. S., 1994. The long, the short and the stalled: on the attributes of phytoplankton selected by physical mixing in lakes and rivers. Hydrobiologia 289: 6–21.

    Google Scholar 

  • Rodrigues, C., 1996. Artenvielfalt und Tiefenabfolge der Bodentiere in Sempachersee. Kant. Amt für Umweltschutz, Luzern: 1–70.

  • Sas, H., 1989. Lake restoration by reduction of nutrient loading: Expectations, Experiences, Extrapolations. Academia Verlag Richarz, St. Augustin, FRG.

    Google Scholar 

  • Schroeder, R., 1969. Ein summierender Wasserschöpfer. Arch. Hydrobiol. 66: 241–243.

    Google Scholar 

  • Schumpelick Deuschel, B., 1995. Einfluss der Populationsstruktur, Verteilung und Biomasse des Planktons auf das community grazing in Hallwilersee. Diss. ETH Nr. 11293, Zürich: 168 pp.

  • Shannon, C. E. & W. Weaver, 1949. The Mathematical Theory of Communication. Urbana, Chicago, London, Univ. Illinois Press: 125 pp.

    Google Scholar 

  • Shapiro, J. & D. I. Wright, 1984. Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshwat. Biol. 14: 371–383.

    Google Scholar 

  • Sommer, U., U. Gaedke & A. Schweizer, 1992. The first decade of oligotrophication of Lake Constance. Oecologia 93: 276–284.

    Google Scholar 

  • Stadelmann, P., 1980. Der Zustand des Sempachersees. Wasser, Energie, Luft 72/10: 311–318.

    Google Scholar 

  • Stadelmann, P., H. R. Bürgi, R. Gädifer, W. Geiger, D. Imboden, T. Joller, J. Muggli, E. Staub & A. Tour, 1985. Bericht der Expertengruppe über das Fischsterben im Sempachersee voin 7./8. August 1984. Kantonales Amt für Umweltschutz, Luzern: 40 pp.

  • Stadelmann, P., 1988. Der Zustand des Sempachersees. Wasser, Energie, Luft 80: 81–96.

    Google Scholar 

  • Thomas, E. A., 1966. Der Pfäffikersee vor, während und nach künstlicher Durchmischung. Verh. int. Ver. Limnol. 16: 144.

    Google Scholar 

  • Thomas, E. A., 1953. Empirische und experimentelle Untersuchungen zur Kenntnis der Minimumsstoffe in 46 Seen der Schweiz und angrenzender Gebiete. Schweiz. Ver. Gas-& Wasserfachmänner, Monatsbull. 9/10: 1–11.

    Google Scholar 

  • Tilzer, M. & B. Beese, 1988. The seasonal productivity cycle of phytoplankton and controlling factors in Lake Constance. Schweiz. Z. Hydrol. 50/1: 1–39.

    Google Scholar 

  • Uehlinger, U., H. R. Bürgi & R. Müller, 1996. Veränderungen der Oekologie von Gewässern durch die Phosphatabnahme. EAWAG News 42: 14–17.

    Google Scholar 

  • Utermoehl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. Limnol. 9: 1–38.

    Google Scholar 

  • Van Donk, E., R. D. Gulati & M. P. Grimm, 1990. Restoration by biomanipulation in a small hypertrophic lake: first-year results. Hydrobiologia 191: 285–295.

    Google Scholar 

  • Wehrli, B. & A. Wüest, 1996. Zehn Jahre Seenbelüftung: Erfahrungen und Optionen. Schriftenreihe EAWAG Nr. 9. 128 pp.

  • Wetzel, R. G., 1999. Biodiversity and shifting energy stability within freshwater ecosystems. Arch. Hydrobiol. Spec. Issues Adv. Limnol. 54: 19–33.

    Google Scholar 

  • Zimmermann, U., 1969. Oekologische und physiologische Untersuchungen an der planktischen Blaualge Oscillatoria rubescens D.C. unter besonderer Berücksichtigung von Licht und Temperatur. Schweiz. Z. Hydrol. 31: 1–58.

    Google Scholar 

  • Zimmermann, U., F. Forster & H. Sontheimer, 1993. Langzeitveränderung der Wasserqualität in Zürichober-und Walensee. Ber. Wasserversorgung Zürich: 1–89.

  • Züllig, H., 1982. Untersuchungen über die Stratigraphie von Carotinoiden im geschichteten Sediment von 10 Schweizer Seen zur Erkundung früherer Phytoplankton-Entfaltungen. Schweiz. Z. Hydrol. 44: 1–98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bürgi, H., Stadelmann, P. Change of phytoplankton composition and biodiversity in Lake Sempach before and during restoration. Hydrobiologia 469, 33–48 (2002). https://doi.org/10.1023/A:1015575527280

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015575527280

Navigation