Skip to main content
Log in

A Data Generator for Evaluating Spatial Issues in Precision Agriculture

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

With the rapid rise in site-specific data collection, many research efforts have been directed towards finding optimal sampling and analysis procedures. However, the absence of widely available high quality precision agriculture data sets makes it difficult to compare results from separate experiments and to assess the optimality and applicability of procedures. To provide a tool for spatial data experimentation, we have developed a spatial data generator that allows users to produce data layers with given spatial properties and a response variable (e.g. crop yield) dependent upon user specified functions. Differences in response functions within fields can be simulated by assigning different models to regions in coordinate-(x and y) or feature space (multidimensional space of attributes that may have an influence on response). Noise, either unexplained variance or sensor error, can be added to all spatial layers. Sampling and interpolation error is modeled by sampling a continuous data layer and interpolating values at unsampled locations. The program has been successfully tested for up to 15000 grid points, 10 features and 5 models. As an illustration of the potential uses of generated data, the effect of sampling density and kriging interpolation on neural network prediction of crop yield was assessed. Yield prediction accuracy was highly related (correlation coefficient 0.98) to the accuracy of the interpolated layers indicating that unless data are sampled at very high densities relative to their geostatistical properties, one should not attempt to build highly accurate regression functions using interpolated data. By allowing users to generate large amounts of data with controlled complexity and features, the spatial data generator should facilitate the development of improved sampling and analysis procedures for spatial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avnimelech, R. and Intrator, N. 1999. Boosting regression estimators. Neural Computation 11, 491–513.

    Google Scholar 

  • Bay, S. D. 1999. The UCI KDD Archive [http://kdd.ics.uci.edu] (Department of Information and Computer Science, University of California, Irvine, CA).

    Google Scholar 

  • Ben-Dor, E. and Banin, A. 1995. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Science 159(4), 364–372.

    Google Scholar 

  • Bertino, E., Chin Ooi, B., Sacks-Davis, R. and Tan, K. L. 1997. Indexing Techniques for Advanced Database Systems (Kluwer Academic Publishers, Dordrecht, the Netherlands).

    Google Scholar 

  • Bierkens, M. F. O. and Burrough, P. A. 1993. The indicator approach to categorical soil data. Parts I and II. Journal of Soil Science 44(2), 361–381.

    Google Scholar 

  • Blackmore, S. and Marshall, C. 1996. In: Precission Agriculture, in Proceedings of the 3rd International Conference on Precision Agriculture, edited by P. C. Robert, R. H. Rust, and W. E. Larson (ASA, CSSA, SSSA, Madison, WI), p. 403–415.

    Google Scholar 

  • Blake, C. L. and Merz, C. J. 1998. UCI repository of machine learning databases [http://www.ics.uci.edu/~ mlearn/MLRepository.html] (Department of Information and Computer Science, University of California, Irvine, CA).

    Google Scholar 

  • Brown, B. 1982. Idaho fertilizer guide-irrigated wheat, Current Information Series (CIS) No. 373 (College of Agriculture, Cooperative Extension Service, Agriculture Experimental Station, University of Idaho, Moscow, ID).

    Google Scholar 

  • Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F. and Konopka, A. E. 1994. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 58, 1501–1511.

    Google Scholar 

  • Chien, Y-J., Lee, D-Y., Guo, H-Y. and Houng, K-H. 1997. Geostatistical analysis of soil properties of midwest Taiwan soils. Soil Science 162(4), 291–298.

    Google Scholar 

  • Chilès, J-P. and Delfiner, P. 1999. Geostatistics-Modeling Spatial Uncertainty (John Wiley & Sons, New York).

    Google Scholar 

  • Chung, S., Sung, J., Sudduth, K. A., Drummond, S. T. and Hyun, B. 2001. Spatial variability of yield, chlorophyll content, and soil properties in a Korean rice paddy field. In: Proceedings of the 5th International Conference on Precision Agriculture, edited by P. C. Robert et al. (ASA, CSSA, SSSA, Madison, WI), p. 195.

    Google Scholar 

  • Corá, J. E., Pierce, F. J., Basso, B. and Ritchie, J. T. 1999. Simulation of within field variability of corn yield with Ceres-Maize model. In: Proceedings of the 4th International Conference on Precision Agriculture, edited by P. C. Robert et al. (ASA, CSSA, and SSSA, Madison WI), p. 1309–1319.

    Google Scholar 

  • Cressie, N. 1985. Fitting variogram models by weighted least squares. Mathematical Geology 17(5), 563–586.

    Google Scholar 

  • Cressie, N. 1993. Statistics for Spatial Data (John Wiley & Sons, New York).

    Google Scholar 

  • Desbarats, J. A. 1996. Modeling spatial variability using geostatistical simulation. In: Geostatistics for Environmental and Geotechnical Applications, ASTMSTP 1283, edited by R. M. Srivastava et al. (American Society for testing and materials, West Conshohocken, PA), p. 32–48.

    Google Scholar 

  • Deutsch, C. V. and Journel, A. G. 1998. GSLIB: Geostatistical Software Library and Users Guide, 2nd ed. (Oxford University Press, New York).

    Google Scholar 

  • Devore, J. L. 1995. Probability and Statistics for Engineering and the Sciences, 4th ed. (International Thomson Publishing Company, Belmont, CA).

    Google Scholar 

  • Doolittle, J. A., Sudduth, K. A., Kitchen, N. R. and Indorante, S. J. 1994. Estimating depths to claypans using electromagnetic induction methods. J. Soil Water Cons. 49(6), 572–575.

    Google Scholar 

  • Duda, R. O., Hart, P. E. and Stork, D. G. 2000. Pattern Classification and Scene Analysis: Pattern Classification, 2nd ed. (John Wiley & Sons, New York).

    Google Scholar 

  • Englund, E. 1993. Spatial simulation: Environmental applications. In: Environmental Modeling with GIS, edited by M. F. Goodchild, B. Q. Parks, and L. T. Steayaert (Oxford Press, New York), p. 432–437.

    Google Scholar 

  • Flury, B. 1997. A First Course in Multivariate Statistics (Springer, New York).

    Google Scholar 

  • Fraisse, C. W., Sudduth, K. A. and Kitchen, N. R. 1999. Evaluation of crop models to simulate site-specific crop development and yield. In: Proceedings of the 4th International Conference on Precision Agriculture, edited by P. C. Robert et al. (ASA, CSSA, and SSSA, Madison WI), p. 1297–1308.

    Google Scholar 

  • Golub, G. H. and van Loan, C. F. 1989. Matrix Computations, 2nd ed. (The John Hopkins University Press, Baltimore, MD).

    Google Scholar 

  • Goovaerts, P. 1997. Geostatistics for Natural Resources Evaluation (Oxford University Press, New York).

    Google Scholar 

  • Gotway, C. A., Ferguson, R. B., Hergert, G. W. and Peterson, T. A. 1996. Comparison of kriging and inversedistance methods for mapping soil parameters. Soil Sci. Am. J. 60(4), 1237–1247.

    Google Scholar 

  • Halvorson, M. 1998. Microsoft Visual Basic 6.0 Professional Step-By-Step (Microsoft Press, Redmond, WA).

    Google Scholar 

  • Hanselman, D. C. and Littlefield, B. C. 1997. Mastering MATLAB 5: A Comprehensive Tutorial and Reference, Matlab Curriculum Series (Prentice Hall Englewood Cliffs, NJ).

  • Hawkins, D. M. and Cressie, N. 1984. Robust kriging-a proposal. Journal of the International Association for Mathematical Geology 16(1), 3–18.

    Google Scholar 

  • Haykin, S. 1999. Neural Networks: A Comprehensive Foundation, 2nd ed. (Prentice Hall, Englewood Cliffs, NJ).

    Google Scholar 

  • Hess, J. R. and Hoskinson, R. L. 1996. Methods for characterization and analysis of spatial and temporal variability for researching and managing integrated farming systems. In: Proceedings of the 3rd International Conference on Precision Agriculture, edited by P. C. Robert, R. H. Rust, and W. E. Larson (ASA, CSSA, SSSA, Madison, WI), p. 641–650.

    Google Scholar 

  • Horton, I. 1998. Beginning Visual C++6 (Wrox Press, Birmingham, UK).

    Google Scholar 

  • Jain, A. K. 1989. Fundamentals of Digital Image Processing (Prentice Hall, Englewood Cliffs, NJ).

    Google Scholar 

  • Joerding, W. H., Li, Y. and Young, D. L. 1994. Feedforward neural network estimation of a crop yield response function. J. Agricultural and Applied Economics 26(1), 252–263.

    Google Scholar 

  • Journel, A. G. 1996. Modeling uncertainty and spatial dependence: Stochastic imaging. Int. J. Geographical Information System 10(5), 517–522.

    Google Scholar 

  • Kravchenko, A. and Bullock, D. G. 1999. A comparative study of interpolation methods for mapping soil properties. Agron. J. 91(3), 393–400.

    Google Scholar 

  • Lazarevic, A., Pokrajac, D. and Obradovic, Z. 2000. Distributed clustering and local regression for knowledge discovery in multiple spatial databases. In: Proceedings on European Symposium on Artificial Neural Networks.

  • Lloyd, S. P. 1982. Least squares quantization in PCM. IEEE Trans. Information Theory 28(2, Part 1), 129–137.

    Google Scholar 

  • Luster, G. R. 1985. Raw materials for Portland cement: Applications of conditional simulation of coregionalization, PhD thesis (Stanford University, Stanford, CA).

    Google Scholar 

  • McBratney, A. B. and Pringle, M. J. 1997. Spatial variability in soil—implications for precision agriculture.In: Precision Agriculture, edited by J. V. Stafford (Bios, Oxford, England), p. 3–32.

  • Middleton, G. V. 2000. Data Analysis in the Earth Sciences Using MATLAB (Prentice Hall, Upper Saddle Hill, NJ).

    Google Scholar 

  • Moran, M. S., Inoue, Y. and Barnes, E. M. 1997. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sensing Environ. 61(3), 319–346.

    Google Scholar 

  • Pachepsky, Y. and Acock, B. 1998. Stochastic imaging of soil parameters to assess variability and uncertainty of crop yield estimates. Geoderma 8, 213–229.

    Google Scholar 

  • Paz, J. O., Batchelor, W. D., Colvin, T. S., Logsdon, S. D., Kaspar, T. C., Karlen, D. L., Babcock, B. A. and Pautsch, G. R. 1999. Model-based technique to determine variable rate nitrogen for corn. In: Proceedings of the 4th International Conference on Precision Agriculture, edited by P. C. Robert et al. (ASA, CSSA, and SSSA, Madison WI), p. 1279–1289.

    Google Scholar 

  • Pokrajac, D., Obradovic, Z. and Fiez, T. 2000. Understanding the influence of noise, sampling density and data distribution on spatial prediction quality through the use of simulated data. In: Proceedings of 14th European Simulation Multiconference (ESM).

  • Rossi, R., Borth, P. and Toleerfson, J. 1993. Stochastic simulation for characterizing ecological spatial patterns and appraising risk. Ecological Applications 3(4), 719–735.

    Google Scholar 

  • Russo, D. and Jury, W. 1988. Effect of the sampling network on estimates of the covariance function of stationary fields. Soil Sci. Soc. Amer. J. 52(5), 1228–1234.

    Google Scholar 

  • Sander, J., Ester, M., Kriegel, H.-P. and Xu, X. 1998. Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery 2(2), 169–194.

    Google Scholar 

  • Saunders, S. P., Larscheid, G., Blackmore, B. S. and Stafford, J. V. 1996. A method for direct comparison of differential global positioning system suitable for precision farming. In: Proceedings of the 3rd International Conference on Precision Agriculture, edited by P. C. Robert, R. H. Rust, and W. E. Larson (ASA, CSSA, SSSA, Madison, WI), p. 663–680.

    Google Scholar 

  • Stafford, J. V., Ambler, B., Lark, R. M. and Catt, J. 1996. Mapping and interpreting the yield variation in cereal crops. Computers and Electronics in Agriculture 14(2/3), 101–119.

    Google Scholar 

  • Vucetic, S., Fiez, T. and Obradovic, Z. 2000. Analyzing the influence of data aggregation and sampling density on spatial estimation. Water Resources Research 36(12), 3721–3731.

    Google Scholar 

  • Warrick, A. W., Zhang, R., El-Harris, M. K. and Myers, D. E. 1988. Direct comparisons between kriging and other interpolators. In: Validation of Flow and Transport Models for the Unsaturated Zone, edited by P. J. Wierenga and D. Bachelet (New Mexico State Univ., Las Cruses, NM), p. 505–515.

    Google Scholar 

  • Webster, R. and Oliver, M. A. 1990. Statistical Methods in Soil and Land Resource Survey (Oxford University Press, Oxford [England], New York).

    Google Scholar 

  • Webster, R. and Oliver, M. A. 1992. Sample adequacy to estimate variograms of soil properties. J. Soil Sci. 43(1), 177–192.

    Google Scholar 

  • Wollenhaupt, N. C., Mulla, D. J. and Gotway, C. A. 1997. Soil sampling and interpolation techniques for mapping spatial variability of soil properties. In: The State of Site Specific Management for Agriculture, edited by F. J. Pierce and E. J. Sadler (ASA/CSSA/SSSA, Madison, WI), p. 19–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokrajac, D., Fiez, T. & Obradovic, Z. A Data Generator for Evaluating Spatial Issues in Precision Agriculture. Precision Agriculture 3, 259–281 (2002). https://doi.org/10.1023/A:1015571425416

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015571425416

Navigation