Skip to main content
Log in

The voltage of alumina reduction cells prior to the anode effect

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Alteration in cell voltage of industrial cells after each feeding of fresh alumina is initially small and accelerates to become extremely fast immediately prior to the incipience of the anode effect. Estimates of the components of the cell voltage on the basis of a mathematical model particularly taking account of the action of the gaseous phase underneath the anode are compared with experimental data from industrial cells. The fundamental agreement (in spite of inevitable model insufficiencies) supports the view that the anode effect is induced as the actual anodic current density approaches the limiting one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.I. Beljaev, M.B. Rapoport and L.A. Firsanova, Metallurgie des Aluminiums, vol. I. Verlag der Technik, Berlin 1956, p. 121ff.

    Google Scholar 

  2. P. Drossbach, T. Hashino, P. Krahl and W. Pfei.er, Chemie-Ing.-Technik 33 (1961) 84.

    Google Scholar 

  3. M.P. Taylor, B.J. Welch and J.T. Keniry, J. Electroanal Chem. 168 (1984) 179.

    Google Scholar 

  4. J. Thonstad, F. Nordmo, A.H. Husøy, K.Ø. Vee and D.C. Austrheim, in J.P. McGeer (Ed.), 'Light Metals 1984' (Warrendale, 1984), p. 825.

  5. H.J. Meyer and D.G. Earley, 'Light Metals 1986' (Warrendale, 1986), p. 365.

    Google Scholar 

  6. J. Garbarz-Olivier and C. Guilpin, J. Electroanal Chem. 91 (1978)79.

    Google Scholar 

  7. R. Bunsen, (Poggendor.'s) Ann. Physik 92 (1854) 648.

    Google Scholar 

  8. H. Vogt, J. Appl. Electrochem. 29 (1999) 137.

    Google Scholar 

  9. H. Vogt, J. Appl. Electrochem. 29 (1999) 779.

    Google Scholar 

  10. H. Vogt, Aluminium 74 (2000) 598.

    Google Scholar 

  11. H. Vogt, Metall. Mater. Trans. 31B (2000) 1225.

    Google Scholar 

  12. G. Oesterheld and H. Brunner, Z. Elektrochemie 22 (1916) 38.

    Google Scholar 

  13. K. Arndt and H. Probst, Z. Elektrochemie 29 (1923) 323.

    Google Scholar 

  14. J. Thonstad, Electrochim. Acta 12 (1967) 1219.

    Google Scholar 

  15. P. Novak, I. Roušar, V. Cezner and V. Mejta, Collect. Czech.Commun. 46 (1981) 2788.

    Google Scholar 

  16. A.J. Calandra, J.R. Zavatti and J. Thonstad, Electrochim. Acta 37 (1992) 711.

    Google Scholar 

  17. N.E. Richards, in B. Welch (Ed.), 'Light Metals 1998' (Warrendale, 1998), p. 521.

  18. J. Zoric and A. Solheim, J. Appl. Electrochem. 30 (2000) 787.

    Google Scholar 

  19. K. Grjotheim, C. Krohn, M. Malinovský, K. Matiasovský and J. Thonstad, 'Aluminium Electrolysis' (Aluminium-Verlag, Düsseldorf 1977; 2nd edn 1982).

  20. E.W. Dewing and J. Thonstad, Metall. Mater. Trans. 28B (1997) 1089.

    Google Scholar 

  21. J. Zoric, I. Roušar and J. Thonstad, J. Appl. Electrochem. 27 (1997) 916.

    Google Scholar 

  22. K. Stephan and H. Vogt, Electrochim. Acta 24 (1979) 11.

    Google Scholar 

  23. H. Vogt, Electrochim. Acta 29 (1984) 175.

    Google Scholar 

  24. H. Vogt, Surf. Technol. 17 (1982) 301.

    Google Scholar 

  25. H. Vogt, Electrochim. Acta 29 (1984) 167.

    Google Scholar 

  26. H. Vogt, J. Electrochem. Soc. 137 (1990) 1179.

    Google Scholar 

  27. H. Vogt, unpublished investigations.

  28. R. Piontelli, B. Mazza and P. Pedeferri, A. Tognoni, Electrochim.Metall. 2 (1967) 257.

    Google Scholar 

  29. C.W.M.P. Sillen, The effect of gas bubble evolution on the energy efficiency in water electrolysis. Dissertation Tech. Hogeschool Eindhoven (1983).

    Google Scholar 

  30. R.H.S. Winterton, Int. J. Heat Mass Transfer 27 (1984) 1422.

    Google Scholar 

  31. J. Eigeldinger and H. Vogt, Electrochim. Acta 45 (2000) 4449.

    Google Scholar 

  32. S. Shibata, Denki Kagaku 44 (1976) 709.

    Google Scholar 

  33. H. Vogt, J. Appl. Electrochem. 23 (1993) 1323.

    Google Scholar 

  34. H. Vogt, Z. Phys. Chemie 172 (1991) 123.

    Google Scholar 

  35. J. Hives, J. Thonstad, A. Sterten and P. Fellner, in U. Mnnweiler (Ed.), 'Light Metals 1994' (Minerals, Metals & Materials Soc., Warrendale, 1994), p. 187.

    Google Scholar 

  36. D. Bratland, K. Grjotheim, C. Krohn and K. Matzfeldt, J. Metals 19(10) (1967) 19.

    Google Scholar 

  37. H. Numata and J.O'M. Bockris, Metallurg. Trans. 15B (1984) 39–46.

    Google Scholar 

  38. W.E. Haupin, J. Metals 23(10) (1971) 46.

    Google Scholar 

  39. G. Flusin, Z. Elektrochemie 18 (1912) 174.

    Google Scholar 

  40. J. Thonstad, F. Nordmo and K. Vee, Electrochim. Acta 18 (1973)27.

    Google Scholar 

  41. A. Øygard, T.A. Halvorsen and J. Thonstad, 'Light Metals 1995' (Warrendale, 1995), p. 279.

    Google Scholar 

  42. W.D. Treadwell and A. Köhl, Helv. Chim. Acta 9 (1926) 681.

    Google Scholar 

  43. A.J. Calandra, C.E. Castellano, C.M. Ferro and O. Cobo, in J.E. Andersen (Ed.), 'Light Metals 1982' (Warrendale, 1992), p. 345.

  44. V. Schischkin, Z. Elektrochemie 33 (1927) 83.

    Google Scholar 

  45. H. Vogt and J. Thonstad, 'Light Metals 2002' tobe published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogt, H., Thonstad, J. The voltage of alumina reduction cells prior to the anode effect. Journal of Applied Electrochemistry 32, 241–249 (2002). https://doi.org/10.1023/A:1015533928104

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015533928104

Navigation