Skip to main content

Partial Anode Effect in a Two-Compartment Laboratory Alumina Reduction Cell

  • Conference paper
  • First Online:
Light Metals 2017

Abstract

Most laboratory systems investigating the aluminium production process utilize a single anode set-up. When approaching alumina depletion under constant current conditions in such a system, the potential will increase to high levels (>10 V) and initiate an anode effect and perfluorocarbon generation. However, it has been discovered by industrial measurements that perfluorocarbon generation may also occur at normal cell voltages. With the use of a two-anode setup in parallel with an electronic load this phenomena was investigated in the laboratory. The results indicate that as long as the rest of the cell can acquire the extra load, partial passivation of one or more anodes is possible and can be accompanied by small amounts of PFC evolution (0–3 ppm mol CF4). Individual anode potentials can be highly elevated, albeit the changes get buried in the total cell voltage. Only when the total load becomes too large the voltage rises abruptly and substantial amounts of PFC can be produced (≫1000 ppm mol CF4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. T.A. Aarhaug, O.S. Kjos, H. Gudbrandsen, A. Ferber, A.P. Ratvik, Evaluation of gas composition from laboratory scale electrolysis experiments with anodes of different sulphur content. In: Light Met. 533–536 (2016). Wiley, Hoboken, NJ, USA. doi:10.1002/9781119274780.ch88

  2. H. Åsheim, T. Aarhaug, E. Sandnes, O.S. Kjos, A. Solheim, G.M. Haarberg, A laboratory study of partial anode effects during aluminium electrowinning. ECS Trans. 69(15), 1–12 (2015). doi:10.1149/06915.0001ecst

    Article  Google Scholar 

  3. H. Åsheim, T.A. Aarhaug, A. Ferber, O.S. Kjos, G.M. Haarberg, Monitoring of Continuous PFC Formation in Small to Moderate Size Aluminium Electrolysis Cells (Wiley, USA, 2014), pp. 535–539. doi:10.1002/9781118888438.ch91

  4. H. Åsheim, T.A. Aarhaug, E. Sandnes, O.S. Kjos, A. Solheim, S. Kolås, G.M. Haarberg, Anode Effect Initiation during Aluminium Electrolysis in A Two Compartment Laboratory Cell (Wiley, USA, 2016), pp. 551–556. doi:10.1002/9781119274780.ch92

  5. A. Calandra, C. Castellano, C. Ferro, The electrochemical behaviour of different graphite/cryolite alumina melt interfaces under potentiodynamic perturbations. Electrochim. Acta 24(4), 425–437 (1979). doi:10.1016/0013-4686(79)87031-0

    Article  Google Scholar 

  6. K. Grjotheim, C. Krohn, Neuere Forschungsergebnisse in der Theorie der Aluminiumelektrolyse (Recent progress in research on the theory of aluminum electrolysis). Chemické Zvesti 21(11), 762–773 (1967)

    Google Scholar 

  7. K. Grjotheim, C. Krohn, M. Malinovský, K. Matiašovský, J. Thonstad, Aluminium Electrolysis: Fundamentals of the Hall-Héroult Process, 2nd edn. (Aluminium-Verlag, Düsseldorf, 1982)

    Google Scholar 

  8. E.H. Howard, Some physical and chemical properties of a new sodium aluminum fluoride. J. Am. Chem. Soc. 76(8), 2041–2042 (1954). doi:10.1021/ja01637a003

    Article  Google Scholar 

  9. Intergovernmental Panel on Climate Change (IPCC): Climate Change 2014: Mitigation of Climate Change (Cambridge University Press, New York, 2014)

    Google Scholar 

  10. S. Kolås, P. McIntosh, A. Solheim, High Frequency Measurements of Current through Individual Anodes: Some Results from Measurement Campaigns at Hydro (Wiley, USA, 2015), pp. 729–734. doi:10.1002/9781119093435.ch123

  11. H. Kvande, W. Haupin, Inert anodes for Al smelters: energy balances and environmental impact. JOM 53(5), 29–33 (2001). doi:10.1007/s11837-001-0205-6

    Article  Google Scholar 

  12. J. Marks, C. Bayliss, GHG measurement and inventory for aluminum production. Light Met. 803–808 (2012) (Wiley, Hoboken, NJ, USA). doi:10.1002/9781118359259.ch139

  13. J. Marks, R. Roberts, V. Bakshi, Perfluorocarbon (PFC) generation during primary aluminum production. Light Met. 365–371 (2000). (The Minerals, Metals and Materials Society, Warrendale, PA, USA)

    Google Scholar 

  14. A. Øygard, T.A. Halvorsen, J. Thonstad, T. Røe, M. Bugge, A parameter study of the C–F gases during anode effect in aluminium reduction cells. Light Met. 279–287 (1995). (The Minerals, Metals and Materials Society, Warrendale, PA, USA)

    Google Scholar 

  15. G.C. Rogers, G.H. Cady, Pyrolysis of perfluoro-n-pentane. J. Am. Chem. Soc. 73(7), 3523–3524 (1951). doi:10.1021/ja01151a527

    Article  Google Scholar 

  16. G. Siegemund, W. Schwertfeger, A. Feiring, B. Smart, F. Behr, H. Vogel, B. McKusick, P. Kirsch, Fluorine Compounds, Organic (Wiley, KGaA, Weinheim, Germany, 2016), pp. 1–56

    Google Scholar 

  17. J. Thonstad, On the anode gas reactions in aluminum electrolysis, II. J. Electrochem. Soc. 111(8), 959 (1964). doi:10.1149/1.2426300

    Article  Google Scholar 

  18. J. Thonstad, F. Nordmo, K. Vee, On the anode effect in cryolite-alumina melts—I. Electrochim. Acta 18(1), 27–32 (1973). doi:10.1016/0013-4686(73)87006-9

    Article  Google Scholar 

  19. J. Thonstad, A. Øygård, Q.B. Diep, On the Formation and Decomposition of C-F Gases in Aluminium Cells. In: International Primary Aluminium Institute (IPAI) PFC Workshop, pp. 1–13. London (1994)

    Google Scholar 

  20. P.L. Walker, F. Rusinko, L.G. Austin, Gas reactions of carbon. Adv. Catal. 11(C), 133–221 (1959). doi:10.1016/S0360-0564(08)60418-6

  21. L. Wangxing, C. Xiping, Y. Jianhong, H. Changping, L. Yonggang, L., Defeng, G. Huifang, Latest Results from PFC Investigation in China (Wiley, Hoboken, NJ, USA, 2012), pp. 617–622. doi:10.1002/9781118359259.ch105

  22. B.J. Welch, A. Jassim, C.Y. Cheung, Y. Yao, M. Dorreen, Challenges for controlling anode reaction products in multi-electrode aluminium smelting cells. In: 10th International Conference on Molten Salt Chemistry and Technology (MS10), (Shenyang, China, 2015), pp. 389–400

    Google Scholar 

  23. D.S. Wong, A. Tabereaux, P. Lavoie, Anode effect phenomena during conventional AEs, Low Voltage Propagating AEs & non-propagating AEs. Light Met. 529–534 (2014). (Wiley, Hoboken, NJ, USA). doi:10.1002/9781118888438.ch90

  24. A.A. Zarouni, A.A. Zarouni, DUBAL’s Experience of Low Voltage PFC Emissions. In: 10th Australasian Smelting Technology Conference, (Hobart, Tasmania, Australia, 2011), pp. 1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Åsheim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Åsheim, H., Aarhaug, T.A., Gębarowski, W., Sandnes, E., Solheim, A., Haarberg, G.M. (2017). Partial Anode Effect in a Two-Compartment Laboratory Alumina Reduction Cell. In: Ratvik, A. (eds) Light Metals 2017. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-51541-0_66

Download citation

Publish with us

Policies and ethics